嵌合抗原受体
光遗传学
免疫疗法
癌症研究
光子上转换
细胞疗法
免疫系统
医学
细胞
神经科学
免疫学
生物
化学
遗传学
离子
有机化学
作者
Nhung T. Nguyen,Kai Huang,Hongxiang Zeng,Jing Ji,Rui Wang,Shaohai Fang,Joyce Chen,Xin Liu,Zixian Huang,M. James You,Anjana Rao,Yun Huang,Gang Han,Yubin Zhou
标识
DOI:10.1038/s41565-021-00982-5
摘要
Chimeric antigen receptor (CAR) T cell-based immunotherapy, approved by the US Food and Drug Administration, has shown curative potential in patients with haematological malignancies. However, owing to the lack of control over the location and duration of the anti-tumour immune response, CAR T cell therapy still faces safety challenges arising from cytokine release syndrome and on-target, off-tumour toxicity. Herein, we present the design of light-switchable CAR (designated LiCAR) T cells that allow real-time phototunable activation of therapeutic T cells to precisely induce tumour cell killing. When coupled with imaging-guided, surgically removable upconversion nanoplates that have enhanced near-infrared-to-blue upconversion luminescence as miniature deep-tissue photon transducers, LiCAR T cells enable both spatial and temporal control over T cell-mediated anti-tumour therapeutic activity in vivo with greatly mitigated side effects. Our nano-optogenetic immunomodulation platform not only provides a unique approach to interrogate CAR-mediated anti-tumour immunity, but also sets the stage for developing precision medicine to deliver personalized anticancer therapy. While chimeric antigen receptor (CAR) T cell-based therapy has been approved for clinical use for certain types of blood cancers, it remains difficult to achieve precise spatiotemporal control of the elicited anti-tumour response. Here, the authors propose light-switchable CAR T cells that can be remotely activated by a nano-optogenetic approach, reducing unwanted side effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI