Multi-feature, multi-modal, and multi-source social event detection: A comprehensive survey

计算机科学 事件(粒子物理) 社会化媒体 数据科学 推论 模式 大数据 光学(聚焦) 特征(语言学) 人工智能 数据挖掘 万维网 物理 哲学 社会学 光学 量子力学 语言学 社会科学
作者
Imad Afyouni,Zaher Al Aghbari,Reshma Abdul Razack
出处
期刊:Information Fusion [Elsevier]
卷期号:79: 279-308 被引量:63
标识
DOI:10.1016/j.inffus.2021.10.013
摘要

The tremendous growth of event dissemination over social networks makes it very challenging to accurately discover and track exciting events, as well as their evolution and scope over space and time. People have migrated to social platforms and messaging apps, which represent an opportunity to create a more accurate prediction of social developments by translating event related streams to meaningful insights. However, the huge spread of ‘noise’ from unverified social media sources makes it difficult to accurately detect and track events. Over the last decade, multiple surveys on event detection from social media have been presented, with the aim of highlighting the different NLP, data management and machine learning techniques used to discover specific types of events, such as social gatherings, natural disasters, and emergencies, among others. However, these surveys focus only on a few dimensions of event detection, such as emphasizing on knowledge discovery form single modality or single social media platform or applied only to one specific language. In this survey paper, we introduce multiple perspectives for event detection in the big social data era. This survey paper thoroughly investigates and summarizes the significant progress in social event detection and visualization techniques, by emphasizing crucial challenges ranging from the management, fusion, and mining of big social data, to the applicability of these methods to different platforms, multiple languages and dialects rather than a single language, and with multiple modalities. The survey also focuses on advanced features required for event extraction, such as spatial and temporal scopes, location inference from multi-modal data (i.e., text or image), and semantic analysis. Application-oriented challenges and opportunities are also discussed. Finally, quantitative and qualitative experimental procedures and results to illustrate the effectiveness and gaps in existing works are presented. • Classifying event detection with textual, spatial, temporal, and semantic features. • Defining event spatio-temporal evolution by considering incremental architectures. • Investigating fusion techniques from multiple data sources and multiple modalities. • Discussing various languages and dialects or language-independent mechanisms. • Presenting big data processing tools for scalable and efficient event detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然靖柔发布了新的文献求助10
刚刚
阔达的金鱼完成签到,获得积分10
刚刚
波安班完成签到,获得积分10
1秒前
1秒前
yang发布了新的文献求助10
1秒前
Jasper应助聿1988采纳,获得10
1秒前
Afeng完成签到 ,获得积分10
1秒前
悦耳芹菜完成签到,获得积分10
2秒前
wty完成签到,获得积分10
2秒前
NorMal.L完成签到,获得积分10
2秒前
3秒前
soso完成签到,获得积分10
3秒前
斯文嫣娆发布了新的文献求助10
3秒前
伶俐皮卡丘完成签到,获得积分10
4秒前
务实鞅完成签到 ,获得积分10
4秒前
4秒前
科研小呆瓜完成签到,获得积分10
4秒前
拾寒完成签到,获得积分10
4秒前
等待冰枫完成签到 ,获得积分10
4秒前
芒果发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
昊天月完成签到,获得积分10
5秒前
6秒前
九一发布了新的文献求助10
6秒前
筱xiao完成签到,获得积分10
6秒前
7秒前
ruqinmq完成签到,获得积分10
7秒前
研友_8o5V2n发布了新的文献求助10
8秒前
zzs完成签到 ,获得积分10
8秒前
柏树完成签到,获得积分10
8秒前
佳宝完成签到,获得积分10
8秒前
木棉哆哆完成签到 ,获得积分10
8秒前
Morningstar完成签到,获得积分10
8秒前
任伟超完成签到,获得积分10
9秒前
9秒前
10秒前
wlscj应助HAHA采纳,获得20
10秒前
zz完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315937
求助须知:如何正确求助?哪些是违规求助? 4458488
关于积分的说明 13870596
捐赠科研通 4348245
什么是DOI,文献DOI怎么找? 2388169
邀请新用户注册赠送积分活动 1382240
关于科研通互助平台的介绍 1351627