已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-feature, multi-modal, and multi-source social event detection: A comprehensive survey

计算机科学 事件(粒子物理) 社会化媒体 数据科学 推论 模式 大数据 光学(聚焦) 特征(语言学) 人工智能 数据挖掘 万维网 物理 哲学 社会学 光学 量子力学 语言学 社会科学
作者
Imad Afyouni,Zaher Al Aghbari,Reshma Abdul Razack
出处
期刊:Information Fusion [Elsevier]
卷期号:79: 279-308 被引量:63
标识
DOI:10.1016/j.inffus.2021.10.013
摘要

The tremendous growth of event dissemination over social networks makes it very challenging to accurately discover and track exciting events, as well as their evolution and scope over space and time. People have migrated to social platforms and messaging apps, which represent an opportunity to create a more accurate prediction of social developments by translating event related streams to meaningful insights. However, the huge spread of ‘noise’ from unverified social media sources makes it difficult to accurately detect and track events. Over the last decade, multiple surveys on event detection from social media have been presented, with the aim of highlighting the different NLP, data management and machine learning techniques used to discover specific types of events, such as social gatherings, natural disasters, and emergencies, among others. However, these surveys focus only on a few dimensions of event detection, such as emphasizing on knowledge discovery form single modality or single social media platform or applied only to one specific language. In this survey paper, we introduce multiple perspectives for event detection in the big social data era. This survey paper thoroughly investigates and summarizes the significant progress in social event detection and visualization techniques, by emphasizing crucial challenges ranging from the management, fusion, and mining of big social data, to the applicability of these methods to different platforms, multiple languages and dialects rather than a single language, and with multiple modalities. The survey also focuses on advanced features required for event extraction, such as spatial and temporal scopes, location inference from multi-modal data (i.e., text or image), and semantic analysis. Application-oriented challenges and opportunities are also discussed. Finally, quantitative and qualitative experimental procedures and results to illustrate the effectiveness and gaps in existing works are presented. • Classifying event detection with textual, spatial, temporal, and semantic features. • Defining event spatio-temporal evolution by considering incremental architectures. • Investigating fusion techniques from multiple data sources and multiple modalities. • Discussing various languages and dialects or language-independent mechanisms. • Presenting big data processing tools for scalable and efficient event detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
峰回路转完成签到,获得积分10
刚刚
zxy完成签到 ,获得积分10
2秒前
毛豆应助hyhyhyhy采纳,获得10
3秒前
suxin完成签到,获得积分20
3秒前
壮观溪流完成签到 ,获得积分10
4秒前
顾矜应助明亮无颜采纳,获得10
5秒前
Owen应助小文采纳,获得10
6秒前
10秒前
bazinga应助hyhyhyhy采纳,获得10
13秒前
13秒前
14秒前
sinyashou发布了新的文献求助10
14秒前
搜集达人应助解青文采纳,获得10
16秒前
18秒前
认真的傲柏完成签到,获得积分20
18秒前
斯文败类应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得30
20秒前
Akim应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
徐瑶瑶发布了新的文献求助10
22秒前
Lucas应助AAA采纳,获得10
23秒前
土又鸟发布了新的文献求助10
24秒前
桐桐应助xxxzzz采纳,获得10
24秒前
科研通AI2S应助hyhyhyhy采纳,获得10
24秒前
25秒前
直率铁身完成签到,获得积分10
25秒前
25秒前
26秒前
傲娇的大字奶完成签到,获得积分20
27秒前
开心安莲完成签到,获得积分10
29秒前
30秒前
所所应助徐瑶瑶采纳,获得10
30秒前
明亮无颜发布了新的文献求助10
31秒前
小文发布了新的文献求助10
32秒前
wang发布了新的文献求助10
32秒前
领导范儿应助hyhyhyhy采纳,获得10
34秒前
35秒前
AAA发布了新的文献求助10
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310963
求助须知:如何正确求助?哪些是违规求助? 2943728
关于积分的说明 8516304
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431863
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649755