亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-feature, multi-modal, and multi-source social event detection: A comprehensive survey

计算机科学 事件(粒子物理) 社会化媒体 数据科学 推论 模式 大数据 光学(聚焦) 特征(语言学) 人工智能 数据挖掘 万维网 物理 哲学 社会学 光学 量子力学 语言学 社会科学
作者
Imad Afyouni,Zaher Al Aghbari,Reshma Abdul Razack
出处
期刊:Information Fusion [Elsevier BV]
卷期号:79: 279-308 被引量:63
标识
DOI:10.1016/j.inffus.2021.10.013
摘要

The tremendous growth of event dissemination over social networks makes it very challenging to accurately discover and track exciting events, as well as their evolution and scope over space and time. People have migrated to social platforms and messaging apps, which represent an opportunity to create a more accurate prediction of social developments by translating event related streams to meaningful insights. However, the huge spread of ‘noise’ from unverified social media sources makes it difficult to accurately detect and track events. Over the last decade, multiple surveys on event detection from social media have been presented, with the aim of highlighting the different NLP, data management and machine learning techniques used to discover specific types of events, such as social gatherings, natural disasters, and emergencies, among others. However, these surveys focus only on a few dimensions of event detection, such as emphasizing on knowledge discovery form single modality or single social media platform or applied only to one specific language. In this survey paper, we introduce multiple perspectives for event detection in the big social data era. This survey paper thoroughly investigates and summarizes the significant progress in social event detection and visualization techniques, by emphasizing crucial challenges ranging from the management, fusion, and mining of big social data, to the applicability of these methods to different platforms, multiple languages and dialects rather than a single language, and with multiple modalities. The survey also focuses on advanced features required for event extraction, such as spatial and temporal scopes, location inference from multi-modal data (i.e., text or image), and semantic analysis. Application-oriented challenges and opportunities are also discussed. Finally, quantitative and qualitative experimental procedures and results to illustrate the effectiveness and gaps in existing works are presented. • Classifying event detection with textual, spatial, temporal, and semantic features. • Defining event spatio-temporal evolution by considering incremental architectures. • Investigating fusion techniques from multiple data sources and multiple modalities. • Discussing various languages and dialects or language-independent mechanisms. • Presenting big data processing tools for scalable and efficient event detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
14秒前
诸星大发布了新的文献求助30
18秒前
诸星大发布了新的文献求助10
18秒前
搜集达人应助飞快的孱采纳,获得10
22秒前
加菲丰丰应助科研通管家采纳,获得10
46秒前
Jasper应助科研通管家采纳,获得10
46秒前
SciGPT应助科研通管家采纳,获得10
46秒前
医学生完成签到 ,获得积分10
1分钟前
NexusExplorer应助文艺的寻芹采纳,获得10
1分钟前
1分钟前
等待蚂蚁发布了新的文献求助10
1分钟前
2分钟前
开心每一天完成签到 ,获得积分10
2分钟前
碳土不凡完成签到 ,获得积分10
2分钟前
3分钟前
FashionBoy应助小小娜采纳,获得10
3分钟前
3分钟前
小小娜发布了新的文献求助10
3分钟前
小小娜完成签到,获得积分10
3分钟前
科研通AI5应助002采纳,获得10
4分钟前
4分钟前
002发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
4分钟前
哈哈发布了新的文献求助10
4分钟前
何何发布了新的文献求助10
4分钟前
CipherSage应助哈哈采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
飞快的孱发布了新的文献求助10
5分钟前
5分钟前
Nicole完成签到,获得积分20
5分钟前
Nicole发布了新的文献求助10
5分钟前
花陵完成签到 ,获得积分10
5分钟前
胖胖猪发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626119
求助须知:如何正确求助?哪些是违规求助? 4025136
关于积分的说明 12458423
捐赠科研通 3710373
什么是DOI,文献DOI怎么找? 2046578
邀请新用户注册赠送积分活动 1078526
科研通“疑难数据库(出版商)”最低求助积分说明 960987