Multi-feature, multi-modal, and multi-source social event detection: A comprehensive survey

计算机科学 事件(粒子物理) 社会化媒体 数据科学 推论 模式 大数据 光学(聚焦) 特征(语言学) 人工智能 数据挖掘 万维网 物理 哲学 社会学 光学 量子力学 语言学 社会科学
作者
Imad Afyouni,Zaher Al Aghbari,Reshma Abdul Razack
出处
期刊:Information Fusion [Elsevier BV]
卷期号:79: 279-308 被引量:63
标识
DOI:10.1016/j.inffus.2021.10.013
摘要

The tremendous growth of event dissemination over social networks makes it very challenging to accurately discover and track exciting events, as well as their evolution and scope over space and time. People have migrated to social platforms and messaging apps, which represent an opportunity to create a more accurate prediction of social developments by translating event related streams to meaningful insights. However, the huge spread of ‘noise’ from unverified social media sources makes it difficult to accurately detect and track events. Over the last decade, multiple surveys on event detection from social media have been presented, with the aim of highlighting the different NLP, data management and machine learning techniques used to discover specific types of events, such as social gatherings, natural disasters, and emergencies, among others. However, these surveys focus only on a few dimensions of event detection, such as emphasizing on knowledge discovery form single modality or single social media platform or applied only to one specific language. In this survey paper, we introduce multiple perspectives for event detection in the big social data era. This survey paper thoroughly investigates and summarizes the significant progress in social event detection and visualization techniques, by emphasizing crucial challenges ranging from the management, fusion, and mining of big social data, to the applicability of these methods to different platforms, multiple languages and dialects rather than a single language, and with multiple modalities. The survey also focuses on advanced features required for event extraction, such as spatial and temporal scopes, location inference from multi-modal data (i.e., text or image), and semantic analysis. Application-oriented challenges and opportunities are also discussed. Finally, quantitative and qualitative experimental procedures and results to illustrate the effectiveness and gaps in existing works are presented. • Classifying event detection with textual, spatial, temporal, and semantic features. • Defining event spatio-temporal evolution by considering incremental architectures. • Investigating fusion techniques from multiple data sources and multiple modalities. • Discussing various languages and dialects or language-independent mechanisms. • Presenting big data processing tools for scalable and efficient event detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大图图发布了新的文献求助10
1秒前
1秒前
1秒前
凶狠的便当完成签到,获得积分10
1秒前
刻苦千琴完成签到,获得积分10
2秒前
勤奋迎梦发布了新的文献求助10
2秒前
脑洞疼应助RJM采纳,获得10
2秒前
3秒前
3秒前
3秒前
LLxiaolong发布了新的文献求助10
3秒前
小二郎应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得50
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
David完成签到,获得积分10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
打打应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
6秒前
6秒前
tw1999发布了新的文献求助10
6秒前
慕青应助少7一点8采纳,获得10
6秒前
斯文败类应助稳重的汉堡采纳,获得10
6秒前
科研通AI5应助ZHZ采纳,获得10
7秒前
7秒前
mono发布了新的文献求助10
7秒前
无限的隶完成签到,获得积分20
8秒前
恭喜恭喜完成签到,获得积分20
8秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384336
关于积分的说明 10534304
捐赠科研通 3104803
什么是DOI,文献DOI怎么找? 1709801
邀请新用户注册赠送积分活动 823377
科研通“疑难数据库(出版商)”最低求助积分说明 774048