Multi-feature, multi-modal, and multi-source social event detection: A comprehensive survey

计算机科学 事件(粒子物理) 社会化媒体 数据科学 推论 模式 大数据 光学(聚焦) 特征(语言学) 人工智能 数据挖掘 万维网 物理 哲学 社会学 光学 量子力学 语言学 社会科学
作者
Imad Afyouni,Zaher Al Aghbari,Reshma Abdul Razack
出处
期刊:Information Fusion [Elsevier BV]
卷期号:79: 279-308 被引量:63
标识
DOI:10.1016/j.inffus.2021.10.013
摘要

The tremendous growth of event dissemination over social networks makes it very challenging to accurately discover and track exciting events, as well as their evolution and scope over space and time. People have migrated to social platforms and messaging apps, which represent an opportunity to create a more accurate prediction of social developments by translating event related streams to meaningful insights. However, the huge spread of ‘noise’ from unverified social media sources makes it difficult to accurately detect and track events. Over the last decade, multiple surveys on event detection from social media have been presented, with the aim of highlighting the different NLP, data management and machine learning techniques used to discover specific types of events, such as social gatherings, natural disasters, and emergencies, among others. However, these surveys focus only on a few dimensions of event detection, such as emphasizing on knowledge discovery form single modality or single social media platform or applied only to one specific language. In this survey paper, we introduce multiple perspectives for event detection in the big social data era. This survey paper thoroughly investigates and summarizes the significant progress in social event detection and visualization techniques, by emphasizing crucial challenges ranging from the management, fusion, and mining of big social data, to the applicability of these methods to different platforms, multiple languages and dialects rather than a single language, and with multiple modalities. The survey also focuses on advanced features required for event extraction, such as spatial and temporal scopes, location inference from multi-modal data (i.e., text or image), and semantic analysis. Application-oriented challenges and opportunities are also discussed. Finally, quantitative and qualitative experimental procedures and results to illustrate the effectiveness and gaps in existing works are presented. • Classifying event detection with textual, spatial, temporal, and semantic features. • Defining event spatio-temporal evolution by considering incremental architectures. • Investigating fusion techniques from multiple data sources and multiple modalities. • Discussing various languages and dialects or language-independent mechanisms. • Presenting big data processing tools for scalable and efficient event detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿文文文完成签到,获得积分10
刚刚
俊逸慕灵发布了新的文献求助10
1秒前
1秒前
爱听歌的寄云完成签到,获得积分10
1秒前
1秒前
笑语盈盈完成签到,获得积分10
2秒前
酸奶泡芙完成签到,获得积分10
2秒前
大个应助surfing0210采纳,获得10
2秒前
千千完成签到,获得积分10
2秒前
神启完成签到 ,获得积分10
2秒前
闪闪的摩托完成签到,获得积分10
2秒前
心有暖阳L完成签到,获得积分10
3秒前
WHITE完成签到,获得积分10
3秒前
lily完成签到 ,获得积分10
3秒前
单薄的夜南完成签到,获得积分10
3秒前
系统提示发布了新的文献求助10
3秒前
洪艳完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
落寞的甜瓜完成签到,获得积分10
4秒前
Archie完成签到 ,获得积分10
4秒前
阔达的以丹完成签到,获得积分20
5秒前
Zzzhuan发布了新的文献求助10
5秒前
5秒前
6秒前
匆匆完成签到,获得积分10
6秒前
坚强小蚂蚁完成签到,获得积分10
6秒前
顾矜应助Tiffany采纳,获得10
7秒前
乐乐应助幸福的乾采纳,获得10
7秒前
大模型应助活泼之云采纳,获得30
7秒前
文艺的懿完成签到,获得积分10
7秒前
Nathan完成签到,获得积分10
7秒前
MichaelQin完成签到,获得积分10
8秒前
冷艳的白莲完成签到,获得积分10
8秒前
zheng驳回了慕青应助
8秒前
公硕完成签到 ,获得积分10
8秒前
化学位移值完成签到 ,获得积分10
9秒前
9秒前
千里江山一只蝇完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582