Regulating Coordination Environment in Metal–Organic Frameworks for Adsorption and Redox Conversion of Polysulfides in Lithium–Sulfur Batteries

催化作用 吸附 氧化还原 硫黄 电化学 锂(药物) 化学 金属有机骨架 无机化学 金属 化学工程 材料科学 纳米技术 组合化学 有机化学 电极 物理化学 工程类 内分泌学 医学
作者
Yingbo Xiao,Wei Gong,Sijia Guo,Yuan Ouyang,Dixiong Li,Xin Li,Qinghan Zeng,Wenchao He,Haoyan Deng,Chao Tan,Qi Zhang,Shaoming Huang
出处
期刊:ACS materials letters [American Chemical Society]
卷期号:3 (12): 1684-1694 被引量:27
标识
DOI:10.1021/acsmaterialslett.1c00512
摘要

Metal–organic frameworks (MOFs) have shown potential for trapping and catalyzing lithium polysulfides (LiPSs) in lithium–sulfur batteries (LSBs), which is, however, challenging, because their catalytic metal centers are usually fully coordinated with ligands and inactivated. To understand the design principle of such MOFs, herein, three task-specific Bi-MOFs (Bi-MOF-1, Bi-MOF-2, and Bi-MOF-3) were designed to regulate the catalytic sites and systematically study the mechanism for trapping and catalyzing LiPSs. Specifically, the catalytic function of Bi-MOFs can be artificially activated or locked by exposing Bi3+ clusters or coordinating Bi3+ with organic molecules. A series of ex situ/in situ electrochemical tests and theoretical calculations demonstrated the key role of both the open metal sites on Bi3+ clusters and Bi3+-S interaction within Bi-MOF-1 for adsorbing and catalyzing LiPSs. Moreover, Bi-MOF-1 can improve the specific capacity of LSBs by 50% and decrease the decay rate by 80% after 1000 cycles at 1 C, compared with the LSBs without catalytic interlayer, showing the great potential of catalytic MOFs for high-performance LSBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助zink采纳,获得10
1秒前
科目三应助Jimmy采纳,获得10
1秒前
1秒前
1秒前
芋圆Z.发布了新的文献求助10
2秒前
2秒前
东皇太憨完成签到,获得积分10
2秒前
2秒前
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
orixero应助韭黄采纳,获得10
4秒前
gnufgg完成签到,获得积分10
4秒前
科研通AI5应助tabor采纳,获得10
4秒前
4秒前
互助互惠互通完成签到,获得积分10
4秒前
脑洞疼应助ziyiziyi采纳,获得10
5秒前
5秒前
5秒前
屹舟完成签到,获得积分10
6秒前
zjudxn关注了科研通微信公众号
6秒前
7秒前
7秒前
科研通AI5应助hu970采纳,获得10
7秒前
7秒前
艺玲发布了新的文献求助10
8秒前
咚咚咚完成签到,获得积分10
8秒前
芋圆Z.完成签到,获得积分10
8秒前
atad2发布了新的文献求助10
8秒前
li梨完成签到,获得积分10
8秒前
9秒前
晏小敏完成签到,获得积分10
9秒前
爆米花应助风中寄云采纳,获得10
10秒前
屹舟发布了新的文献求助10
10秒前
Dou完成签到,获得积分10
10秒前
白泯完成签到,获得积分10
11秒前
1ssd发布了新的文献求助10
11秒前
667发布了新的文献求助10
11秒前
小二郎应助辰柒采纳,获得10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759