已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Psychophysiological Modeling of Trust In Technology

计算机科学 特征选择 分类器(UML) 感知 人工智能 机器学习 心理学 神经科学
作者
Ighoyota Ben. Ajenaghughrure,Sónia Sousa,David Lamas
出处
期刊:Proceedings of the ACM on human-computer interaction [Association for Computing Machinery]
卷期号:5 (EICS): 1-25 被引量:8
标识
DOI:10.1145/3459745
摘要

Trust as a precursor for users' acceptance of artificial intelligence (AI) technologies that operate as a conceptual extension of humans (e.g., autonomous vehicles (AVs)) is highly influenced by users' risk perception amongst other factors. Prior studies that investigated the interplay between risk and trust perception recommended the development of real-time tools for monitoring cognitive states (e.g., trust). The primary objective of this study was to investigate a feature selection method that yields feature sets that can help develop a highly optimized and stable ensemble trust classifier model. The secondary objective of this study was to investigate how varying levels of risk perception influence users' trust and overall reliance on technology. A within-subject four-condition experiment was implemented with an AV driving game. This experiment involved 25 participants, and their electroencephalogram, electrodermal activity, and facial electromyogram psychophysiological signals were acquired. We applied wrapper, filter, and hybrid feature selection methods on the 82 features extracted from the psychophysiological signals. We trained and tested five voting-based ensemble trust classifier models using training and testing datasets containing only the features identified by the feature selection methods. The results indicate the superiority of the hybrid feature selection method over other methods in terms of model performance. In addition, the self-reported trust measurement and overall reliance of participants on the technology (AV) measured with joystick movements throughout the game reveals that a reduction in risk results in an increase in trust and overall reliance on technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Z1070741749发布了新的文献求助10
1秒前
meini发布了新的文献求助10
4秒前
虚心醉蝶完成签到 ,获得积分10
4秒前
JamesPei应助哈比人linling采纳,获得10
6秒前
英姑应助123采纳,获得10
8秒前
9秒前
大模型应助thousandlong采纳,获得10
10秒前
汉堡包应助小星星采纳,获得10
14秒前
香樟遗完成签到 ,获得积分10
15秒前
16秒前
王紫宁发布了新的文献求助30
16秒前
1461完成签到 ,获得积分10
16秒前
17秒前
光能使者完成签到,获得积分10
18秒前
19秒前
thousandlong完成签到,获得积分10
20秒前
99668完成签到,获得积分10
20秒前
CodeCraft应助可爱皮皮虾采纳,获得10
21秒前
lili发布了新的文献求助30
22秒前
123完成签到 ,获得积分10
24秒前
汉堡包应助调皮夜蓉采纳,获得10
25秒前
小饼饼完成签到,获得积分10
26秒前
thousandlong发布了新的文献求助10
26秒前
战神林北完成签到,获得积分10
26秒前
27秒前
豆乳米麻薯完成签到,获得积分10
29秒前
英姑应助生动的不尤采纳,获得10
29秒前
lili完成签到,获得积分10
30秒前
song完成签到 ,获得积分10
30秒前
超级小熊猫完成签到 ,获得积分10
32秒前
coiledcoil完成签到,获得积分10
33秒前
34秒前
习月阳完成签到,获得积分10
35秒前
38秒前
ffchen111完成签到 ,获得积分10
40秒前
阿烨完成签到,获得积分10
40秒前
生活于微完成签到 ,获得积分10
41秒前
44秒前
冷月完成签到,获得积分10
44秒前
44秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3130002
求助须知:如何正确求助?哪些是违规求助? 2780801
关于积分的说明 7750187
捐赠科研通 2436031
什么是DOI,文献DOI怎么找? 1294484
科研通“疑难数据库(出版商)”最低求助积分说明 623703
版权声明 600570