亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Psychophysiological Modeling of Trust In Technology

计算机科学 特征选择 分类器(UML) 感知 人工智能 机器学习 心理学 神经科学
作者
Ighoyota Ben. Ajenaghughrure,Sónia Sousa,David Lamas
出处
期刊:Proceedings of the ACM on human-computer interaction [Association for Computing Machinery]
卷期号:5 (EICS): 1-25 被引量:8
标识
DOI:10.1145/3459745
摘要

Trust as a precursor for users' acceptance of artificial intelligence (AI) technologies that operate as a conceptual extension of humans (e.g., autonomous vehicles (AVs)) is highly influenced by users' risk perception amongst other factors. Prior studies that investigated the interplay between risk and trust perception recommended the development of real-time tools for monitoring cognitive states (e.g., trust). The primary objective of this study was to investigate a feature selection method that yields feature sets that can help develop a highly optimized and stable ensemble trust classifier model. The secondary objective of this study was to investigate how varying levels of risk perception influence users' trust and overall reliance on technology. A within-subject four-condition experiment was implemented with an AV driving game. This experiment involved 25 participants, and their electroencephalogram, electrodermal activity, and facial electromyogram psychophysiological signals were acquired. We applied wrapper, filter, and hybrid feature selection methods on the 82 features extracted from the psychophysiological signals. We trained and tested five voting-based ensemble trust classifier models using training and testing datasets containing only the features identified by the feature selection methods. The results indicate the superiority of the hybrid feature selection method over other methods in terms of model performance. In addition, the self-reported trust measurement and overall reliance of participants on the technology (AV) measured with joystick movements throughout the game reveals that a reduction in risk results in an increase in trust and overall reliance on technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
许三问完成签到 ,获得积分0
5秒前
ST发布了新的文献求助10
5秒前
一一同学发布了新的文献求助30
8秒前
白小超人完成签到 ,获得积分10
12秒前
li发布了新的文献求助10
12秒前
MCRing完成签到,获得积分10
17秒前
学术小白完成签到,获得积分10
22秒前
科研通AI5应助满意的世界采纳,获得50
38秒前
hahhhah完成签到 ,获得积分10
38秒前
song完成签到 ,获得积分10
40秒前
开心绫发布了新的文献求助10
41秒前
Wind0240完成签到,获得积分10
42秒前
Hung完成签到,获得积分10
46秒前
一一同学完成签到,获得积分10
49秒前
50秒前
HY完成签到 ,获得积分10
51秒前
Light完成签到,获得积分10
54秒前
56秒前
li完成签到,获得积分10
57秒前
菠萝完成签到,获得积分10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
深情安青应助科研通管家采纳,获得10
1分钟前
1分钟前
菠萝发布了新的文献求助30
1分钟前
1分钟前
1分钟前
欣喜石头完成签到 ,获得积分10
1分钟前
大学生完成签到 ,获得积分10
1分钟前
吃饱再睡完成签到 ,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
小蘑菇应助Focus采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
eazin完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965562
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155315
捐赠科研通 3245323
什么是DOI,文献DOI怎么找? 1792808
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176