扩展卡尔曼滤波器
荷电状态
等效电路
可观测性
控制理论(社会学)
估计员
卡尔曼滤波器
非线性系统
核(代数)
计算机科学
算法
电池(电)
工程类
数学
电压
应用数学
人工智能
电气工程
物理
组合数学
统计
功率(物理)
量子力学
控制(管理)
作者
Farshid Naseri,Erik Schaltz,Daniel‐Ioan Stroe,Alejandro Gismero,Ebrahim Farjah
出处
期刊:IEEE Transactions on Industrial Electronics
[Institute of Electrical and Electronics Engineers]
日期:2022-04-01
卷期号:69 (4): 3743-3751
被引量:108
标识
DOI:10.1109/tie.2021.3071679
摘要
This article introduces an efficient modeling approach based on the Wiener structure to reinforce the capacity of classical equivalent circuit models (ECMs) in capturing the nonlinearities of lithium-ion (Li-ion) batteries. The proposed block-oriented modeling architecture is composed of a simple linear ECM followed by a static output nonlinearity block, which helps achieving a superior nonlinear mapping property while maintaining the real-time efficiency. The observability of the established battery model is analytically proven. This article also introduces an efficient parameter estimator based on extended-kernel iterative recursive least squares algorithm for real-time estimation of the parameters of the proposed Wiener model. The proposed approach is applied for state-of-charge (SoC) estimation of 3.4-Ah 3.6-V nickel-manganese-cobalt-based Li-ion cells using the extended Kalman filter (EKF). The results show about 1.5% improvement in SoC estimation accuracy compared with the EKF algorithm based on the second-order ECM. A series of real-time tests are also carried out to demonstrate the computational efficiency of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI