Transmon公司
量子位元
连贯性(哲学赌博策略)
量子计算机
超导量子计算
量子
物理
相位量子位
相干时间
量子力学
作者
Alexander Place,Lila V. H. Rodgers,Pranav Mundada,Basil Smitham,Mattias Fitzpatrick,Zhaoqi Leng,Anjali Premkumar,Jacob Bryon,Andrei Vrajitoarea,Sara Sussman,Guangming Cheng,Trisha Madhavan,Harshvardhan K. Babla,Xuan Hoang Le,Youqi Gang,Berthold Jäck,András Gyenis,Nan Yao,R. J. Cava,Nathalie P. de Leon,Andrew Houck
标识
DOI:10.1038/s41467-021-22030-5
摘要
The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors.
科研通智能强力驱动
Strongly Powered by AbleSci AI