m6A-Maize: Weakly supervised prediction of m6A-carrying transcripts and m6A-affecting mutations in maize (Zea mays)

生物 扎梅斯 计算生物学 转录组 核糖核酸 机器学习 遗传学 基因 计算机科学 农学 基因表达
作者
Zhanmin Liang,Lei Zhang,Haoting Chen,Daiyun Huang,Bowen Song
出处
期刊:Methods [Elsevier BV]
卷期号:203: 226-232 被引量:11
标识
DOI:10.1016/j.ymeth.2021.11.010
摘要

With the rapid development of high-throughput sequencing techniques nowadays, extensive attention has been paid to epitranscriptomics, which covers more than 150 distinct chemical modifications to date. Among that, N6-methyladenosine (m6A) modification has the most abundant existence, and it is also significantly related to varieties of biological processes. Meanwhile, maize is the most important food crop and cultivated throughout the world. Therefore, the study of m6A modification in maize has both economic and academic value. In this research, we proposed a weakly supervised learning model to predict the situation of m6A modification in maize. The proposed model learns from low-resolution epitranscriptome datasets (e.g., MeRIP-seq), which predicts the m6A methylation status of given fragments or regions. By taking advantage of our prediction model, we further identified traits-associated SNPs that may affect (add or remove) m6A modifications in maize, which may provide potential regulatory mechanisms at epitranscriptome layer. Additionally, a centralized online-platform was developed for m6A study in maize, which contains 58,838 experimentally validated maize m6A-containing regions including training and testing datasets, and a database for 2,578 predicted traits-associated m6A-affecting maize mutations. Furthermore, the online web server based on proposed weakly supervised model is available for predicting putative m6A sites from user-uploaded maize sequences, as well as accessing the epitranscriptome impact of user-interested maize SNPs on m6A modification. In all, our work provided a useful resource for the study of m6A RNA methylation in maize species. It is freely accessible at www.xjtlu.edu.cn/biologicalsciences/maize.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
you发布了新的文献求助10
2秒前
李巧儿发布了新的文献求助10
2秒前
g143发布了新的文献求助10
2秒前
涨知识完成签到 ,获得积分10
3秒前
科研通AI2S应助yu采纳,获得10
6秒前
6秒前
7秒前
g143完成签到,获得积分10
8秒前
9秒前
Akim应助斯文跳跳糖采纳,获得10
9秒前
Cheryy完成签到,获得积分10
9秒前
李巧儿完成签到,获得积分20
10秒前
wangyr11发布了新的文献求助10
10秒前
李大瓜发布了新的文献求助10
10秒前
在水一方应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
15秒前
科研通AI2S应助科研通管家采纳,获得30
15秒前
katrina发布了新的文献求助10
15秒前
852应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
diandian1108应助科研通管家采纳,获得10
15秒前
lilian应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
diandian1108应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
lilian应助科研通管家采纳,获得10
16秒前
麦冬冬完成签到,获得积分10
18秒前
21秒前
星辰大海应助zoe采纳,获得10
24秒前
26秒前
言念君子发布了新的文献求助10
26秒前
28秒前
安安完成签到 ,获得积分10
28秒前
28秒前
Suki发布了新的文献求助10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674103
求助须知:如何正确求助?哪些是违规求助? 3229501
关于积分的说明 9785915
捐赠科研通 2940003
什么是DOI,文献DOI怎么找? 1611582
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344