Machine learning‐based method for tacrolimus dose predictions in Chinese kidney transplant perioperative patients

医学 队列 加药 他克莫司 围手术期 肾移植 CYP3A5 肾移植 机器学习 算法 移植 外科 数学 内科学 计算机科学 生物化学 基因 基因型 化学
作者
Qun Fu,Jing Yan,Guozhen Liu Mr,Xuehui Jiang Mr,Hong Liu,Ying Kong,Xiongjun Hou,Lei Cao,Ping Deng,Pin Xiao,Jiansheng Xiao,Hongwei Peng,Xiaohua Wei
出处
期刊:Journal of Clinical Pharmacy and Therapeutics [Wiley]
卷期号:47 (5): 600-608 被引量:6
标识
DOI:10.1111/jcpt.13579
摘要

Tacrolimus (TAC), a first-line immunosuppressant in solid-organ transplant, has a narrow therapeutic window and large inter-individual variability, which affects its use in clinical practice. Successful predictions using machine learning algorithms have been reported in several fields. However, a comparison of 10 machine learning model-based TAC pharmacogenetic and pharmacokinetic dosing algorithms for kidney transplant perioperative patients of Chinese descent has not been reported. The objective of this study was to screen and establish an appropriate machine learning method to predict the individualized dosages of TAC for perioperative kidney transplant patients.The records of 2551 patients were collected from three transplant centres, 80% of which were randomly selected as a 'derivation cohort' to develop the dose prediction algorithm, while the remaining 20% constituted a 'validation cohort' to validate the final algorithm selected. Important features were screened according to our previously established population pharmacokinetic model of tacrolimus. The performances of the algorithms were evaluated and compared using R-squared and the mean percentage in the remaining 20% of patients.This study identified several factors influencing TAC dosage, including CYP3A5 rs776746, CYP3A4 rs4646437, haematocrit, Wuzhi capsules, TAC daily dose, age, height, weight, post-operative time, nifedipine and the medication history of the patient. According to our results, among the 10 machine learning models, the extra trees regressor (ETR) algorithm showed the best performance in the training set (R-squared: 1, mean percentage within 20%: 100%) and test set (R-squared: 0.85, mean percentage within 20%: 92.77%) of the derivation cohort. The ETR model successfully predicted the ideal TAC dosage in 97.73% of patients, especially in the intermediate dosage range (>5 mg/day to <8 mg/day), whereby the ideal TAC dosage could be successfully predicted in 99% of the patients.The results indicated that the ETR algorithm, which was chosen to establish the dose prediction model, performed better than the other nine machine learning models. This study is the first to establish ETR algorithms to predict TAC dosage. This study will further promote the individualized medication of TAC in kidney transplant patients in the future, which has great significance in ensuring the safety and effectiveness of drug use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助奕颖王采纳,获得10
刚刚
刚刚
迎海完成签到,获得积分10
刚刚
LC发布了新的文献求助10
1秒前
summer发布了新的文献求助10
1秒前
JamesPei应助唯美采纳,获得10
2秒前
今后应助CLF采纳,获得10
2秒前
巫诶发布了新的文献求助10
2秒前
2秒前
3秒前
轩辕德地完成签到,获得积分10
3秒前
HEIKU应助Doctor_Peng采纳,获得10
3秒前
Likx完成签到,获得积分10
4秒前
欣喜电源完成签到,获得积分10
4秒前
无心的若山完成签到,获得积分10
5秒前
呆萌蘑菇科研人完成签到,获得积分10
5秒前
晴天发布了新的文献求助20
5秒前
笑笑应助美满的小甜瓜采纳,获得10
5秒前
完美世界应助djm采纳,获得20
5秒前
sad完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
小半完成签到,获得积分10
7秒前
yang完成签到,获得积分10
8秒前
NiLou完成签到,获得积分10
8秒前
wangdayun完成签到,获得积分10
8秒前
今天不学习明天变垃圾完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
Lemon完成签到 ,获得积分10
11秒前
11秒前
刘大可完成签到,获得积分10
13秒前
波西米亚完成签到,获得积分10
13秒前
汉堡包应助冷静的盼烟采纳,获得10
13秒前
琪琪的发布了新的文献求助10
13秒前
研友_850aeZ完成签到,获得积分10
14秒前
Strike完成签到,获得积分10
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143062
求助须知:如何正确求助?哪些是违规求助? 2794082
关于积分的说明 7809850
捐赠科研通 2450395
什么是DOI,文献DOI怎么找? 1303818
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384