极化子
激子
放松(心理学)
材料科学
激发态
凝聚态物理
冷凝
分子物理学
原子物理学
光电子学
物理
热力学
心理学
社会心理学
作者
Tomohiro Ishii,Kiyoshi Miyata,Masashi Mamada,Fatima Bencheikh,Fabrice Mathevet,Ken Onda,Stéphane Kéna‐Cohen,Chihaya Adachi
标识
DOI:10.1002/adom.202102034
摘要
Abstract In organic microcavities, a macroscopic condensate of exciton‐polaritons can be formed at high‐exciton polariton densities. The threshold for forming this condensate is proportional to the relaxation rate from initially excited excitons to these polaritons and the lifetime of the lowest energy polariton states. Although the influence of the lower polariton (LP) lifetime on the threshold has been studied, the relationship between the polariton relaxation rate and the threshold has not been fully explored. In this study, a room‐temperature polariton condensate is demonstrated at a threshold pump fluence of 9.7 ± 0.1 µJ cm −2 , in a microcavity containing 4,4″‐bis(( E )‐4‐(3,6‐bis(2‐ethylhexyl)‐(9 H ‐carbazol‐9‐yl))styryl)‐1,1″‐biphenyl (BSBCz‐EH). By using a semiclassical model to describe the polariton kinetics, it is revealed that this low threshold results from the rapid relaxation rate from the dark exciton reservoir to the set of the LP states forming the condensate, with an effective rate W ep ≈ 2.0 × 10 −5 cm 3 s −1 . These results show that accelerating polariton relaxation is possible and is an important factor for realizing low‐threshold polariton condensates.
科研通智能强力驱动
Strongly Powered by AbleSci AI