Multi-objective optimization of supply air jet enhancing airflow uniformity in data center with Taguchi-based grey relational analysis

田口方法 灰色关联分析 气流 喷嘴 正交数组 过道 计算流体力学 喷射(流体) 模拟 机械工程 汽车工程 工程类 计算机科学 结构工程 数学 统计 航空航天工程
作者
Baolian Niu,Min Su,Zhongbin Zhang,Yinglin Li,Yijuan Cao,Song Pan
出处
期刊:Building and Environment [Elsevier]
卷期号:208: 108606-108606 被引量:24
标识
DOI:10.1016/j.buildenv.2021.108606
摘要

In most data centers (DCs), hot spots reduce the reliability, durability, and efficiency of server cooling. The hot spots are mainly attributed to the uneven airflow distribution and the resulting mixing of cold and hot air. To evenly distribute the airflow, the relay jet fan, an active local adjustment technology, is introduced into the under-floor air distribution in DCs. The jet fans are set in front of the closed cold aisle where the hot spots most often appear. The nozzle height, nozzle angle, horizontal position and attachment distance greatly influence the performance of the new system. To comprehensively evaluate the multiple levels of these affecting parameters, a large number of cases that need testing make it impossible to conduct research. An approach based on the Taguchi method with grey relational analysis optimizes the system and the L16 (44) orthogonal array is employed to design the experiments. The Taguchi method combined with computational fluid dynamics determines the optimal combinations of the Supply Heat Index (SHI), Return Temperature Index (RTI), β, and Index of Mixing (IOM). The significance of the affecting parameters is revealed and ranked, and through the main effect analysis and the analysis of variance, the nozzle angle is chosen as the most important among the four affecting parameters. After that, the Taguchi-based grey relational analysis transforms the multi-objective into a single-objective to determine the optimal combination of design variables. Finally, a confirmatory test was conducted, and the optimal combination reduces the server temperature by up to 7.2 °C.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助伈X采纳,获得10
刚刚
Ciyuan完成签到,获得积分10
刚刚
轩辕德地发布了新的文献求助10
刚刚
枯叶蝶完成签到 ,获得积分10
1秒前
科目三应助袁小圆采纳,获得30
1秒前
2秒前
yuan发布了新的文献求助10
2秒前
2秒前
xiuxiuzhang发布了新的文献求助10
3秒前
lxlxllx89发布了新的文献求助10
3秒前
4秒前
123发布了新的文献求助10
4秒前
坚定的电灯胆完成签到,获得积分10
5秒前
5秒前
6秒前
quhayley应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
17应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
quhayley应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
17应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
bkagyin应助后来啊采纳,获得10
7秒前
ding应助科研通管家采纳,获得100
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
7秒前
完美世界应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
Miller应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得30
8秒前
8秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156829
求助须知:如何正确求助?哪些是违规求助? 2808171
关于积分的说明 7876754
捐赠科研通 2466574
什么是DOI,文献DOI怎么找? 1312950
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919