Bias correction framework for satellite precipitation products using a rain/no rain discriminative model

降水 环境科学 均方误差 判别式 卫星 相关系数 气象学 比例(比率) 气候学 统计 计算机科学 数学 地理 机器学习 工程类 地质学 航空航天工程 地图学
作者
Shuai Xiao,Lei Zou,Jun Xia,Zhizhou Yang,Tianci Yao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:818: 151679-151679 被引量:11
标识
DOI:10.1016/j.scitotenv.2021.151679
摘要

Despite the benefits of global coverage with high spatiotemporal resolutions, satellite precipitation products (SPPs) still suffer from inadequate accuracy in natural hazard forecasts, hydrology, and water resources management. Rain/no-rain (R/NR) detection error significantly affects the accuracy of daily SPPs, which has attracted increasing attention in recent years. This paper proposed a precipitation bias correction framework (PBCF) to improve the accuracy of daily SPPs, focusing on improving the ability of SPPs to detect the occurrence of the precipitation based on a R/NR discriminative model. Multiple land and climate variables derived from ERA5-Land reanalysis dataset were used to construct the R/NR discriminative model using the artificial neural network (ANN) method. A case study on the bias correction of daily precipitation of Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) over Hanjiang River Basin (HRB) was conducted for the period 2004-2018. Daily precipitation of 64 meteorological stations in HRB were spatially and randomly divided into two groups: 44 stations were used for training, validating and testing the constructed R/NR discriminative model, and the other 20 stations were used to evaluate the performance of the R/NR discriminative model in different topographic areas. The results indicate that the proposed PBCF could reduce the bias of IMERG, with the correlation coefficient (R) increased by 19.4%, the root mean square error (RMSE) and the mean absolute error (MAE) decreased by 19.0% and 29.8% on the daily scale, respectively. The constructed R/NR discriminative model could improve the ability of IMERG for detecting the precipitation occurrence, with a classification accuracy of about 86.5% and the equitable threat score (ETS) increased from 0.15 to 0.58. Further analyses showed that the proposed PBCF was more efficient than the cumulative distribution function mapping method in correcting IMERG. This study provides a novel insight for the correction of daily SPPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
li完成签到 ,获得积分10
3秒前
wbb完成签到 ,获得积分10
6秒前
qqqdewq完成签到,获得积分10
6秒前
dingtao发布了新的文献求助10
7秒前
开心的寄灵完成签到 ,获得积分10
8秒前
情怀应助pazhao采纳,获得10
10秒前
阿南完成签到 ,获得积分10
12秒前
善良的嫣完成签到 ,获得积分10
14秒前
照亮世界的ay完成签到,获得积分10
15秒前
Qian完成签到 ,获得积分10
18秒前
19秒前
mosisa完成签到,获得积分20
21秒前
嘚儿塔完成签到,获得积分10
23秒前
马淑贤完成签到 ,获得积分10
24秒前
正直的松鼠完成签到 ,获得积分10
27秒前
陶醉的又夏完成签到 ,获得积分10
28秒前
科研韭菜完成签到 ,获得积分10
31秒前
33秒前
秋秋完成签到,获得积分10
34秒前
伍六七完成签到,获得积分10
36秒前
英姑应助科研通管家采纳,获得10
36秒前
风清扬应助科研通管家采纳,获得30
36秒前
Xiaoxiao应助科研通管家采纳,获得10
36秒前
科目三应助科研通管家采纳,获得10
36秒前
蒸馏水完成签到,获得积分10
44秒前
45秒前
量子星尘发布了新的文献求助10
47秒前
CYQ完成签到 ,获得积分10
48秒前
温梦花雨完成签到 ,获得积分10
51秒前
害羞的雁易完成签到 ,获得积分10
52秒前
53秒前
小苏发布了新的文献求助10
57秒前
1分钟前
柳叶刀Z完成签到 ,获得积分10
1分钟前
macleod发布了新的文献求助10
1分钟前
风笛完成签到 ,获得积分10
1分钟前
1分钟前
LY0430完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685708
关于积分的说明 14838825
捐赠科研通 4673854
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471067