Bias correction framework for satellite precipitation products using a rain/no rain discriminative model

降水 环境科学 均方误差 判别式 卫星 相关系数 气象学 比例(比率) 气候学 统计 计算机科学 数学 地理 机器学习 工程类 地质学 航空航天工程 地图学
作者
Shuai Xiao,Lei Zou,Jun Xia,Zhizhou Yang,Tianci Yao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:818: 151679-151679 被引量:11
标识
DOI:10.1016/j.scitotenv.2021.151679
摘要

Despite the benefits of global coverage with high spatiotemporal resolutions, satellite precipitation products (SPPs) still suffer from inadequate accuracy in natural hazard forecasts, hydrology, and water resources management. Rain/no-rain (R/NR) detection error significantly affects the accuracy of daily SPPs, which has attracted increasing attention in recent years. This paper proposed a precipitation bias correction framework (PBCF) to improve the accuracy of daily SPPs, focusing on improving the ability of SPPs to detect the occurrence of the precipitation based on a R/NR discriminative model. Multiple land and climate variables derived from ERA5-Land reanalysis dataset were used to construct the R/NR discriminative model using the artificial neural network (ANN) method. A case study on the bias correction of daily precipitation of Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) over Hanjiang River Basin (HRB) was conducted for the period 2004-2018. Daily precipitation of 64 meteorological stations in HRB were spatially and randomly divided into two groups: 44 stations were used for training, validating and testing the constructed R/NR discriminative model, and the other 20 stations were used to evaluate the performance of the R/NR discriminative model in different topographic areas. The results indicate that the proposed PBCF could reduce the bias of IMERG, with the correlation coefficient (R) increased by 19.4%, the root mean square error (RMSE) and the mean absolute error (MAE) decreased by 19.0% and 29.8% on the daily scale, respectively. The constructed R/NR discriminative model could improve the ability of IMERG for detecting the precipitation occurrence, with a classification accuracy of about 86.5% and the equitable threat score (ETS) increased from 0.15 to 0.58. Further analyses showed that the proposed PBCF was more efficient than the cumulative distribution function mapping method in correcting IMERG. This study provides a novel insight for the correction of daily SPPs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhz完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
贺光萌完成签到 ,获得积分10
3秒前
3秒前
那小子真帅完成签到,获得积分10
3秒前
4秒前
华仔应助幸福胡萝卜采纳,获得10
4秒前
5秒前
越越发布了新的文献求助10
6秒前
小面面完成签到 ,获得积分10
6秒前
小鱼发布了新的文献求助10
6秒前
8秒前
8秒前
qiancheng完成签到,获得积分10
9秒前
10秒前
FashionBoy应助bb采纳,获得10
11秒前
12秒前
orixero应助小鱼采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
玩命的雁丝完成签到 ,获得积分10
13秒前
何斐完成签到 ,获得积分10
14秒前
LIU发布了新的文献求助10
15秒前
15秒前
海边看日出完成签到,获得积分20
15秒前
帅气的梦松完成签到 ,获得积分20
16秒前
123lx完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
zlk发布了新的文献求助10
18秒前
21秒前
科研通AI2S应助多情雨灵采纳,获得10
24秒前
聪慧的凉面关注了科研通微信公众号
24秒前
25秒前
狂野世立完成签到,获得积分10
28秒前
慕青应助leiyuekai采纳,获得10
28秒前
Tiger发布了新的文献求助30
29秒前
JamesPei应助LIU采纳,获得10
29秒前
29秒前
越越发布了新的文献求助10
30秒前
wz发布了新的文献求助10
30秒前
deer完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896