Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions

果园 橙色(颜色) 人工智能 计算机科学 数学 农业工程 园艺 工程类 生物
作者
Hamzeh Mirhaji,Mohsen Soleymani,Abbas Asakereh,Saman Abdanan Mehdizadeh
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:191: 106533-106533 被引量:126
标识
DOI:10.1016/j.compag.2021.106533
摘要

Fruit load estimation is an essential step toward Precision Agriculture (PA) as it helps growers more accurately predict market planning, worker planning, purchase of appropriate equipment and so on. Reliable and accurate estimation of fruit yield in an orchard with hundreds of trees needs automatic methods. In recent years, Deep Learning (DL) has been studied widely and applied in various fields of agriculture. Accordingly, the YOLO detection models were applied to detect and count ripe Dezful native orange in an orchard in southwestern Iran. The models were adapted through transfer learning and trained by Google Colaboratory in the RGB images to detect and count orange fruits. Models performance and accuracy of yield estimation for an orchard with 1115 trees were examined. The process was conducted in 3 steps, including training and testing the different versions of the YOLO models by creating an image dataset of orange trees in different illumination conditions, evaluating the models on 100 sample trees, and finally extracting the yield variation map of the orchard after detecting and counting the oranges on images taken from all the trees in the orchard. The precision, recall, F1-score and mAP of the YOLO-V4 as the best model for orange detection over the test images were 91.23%, 92.8%, 92%, and 90.8%, respectively. The overall performance of the models in nighttime and daytime imaging was not significantly different. The YOLO-V4 model was chosen to use for yield estimation in the orchard. The promising results show that the YOLO models can effectively provide researchers and agricultural activists with a simple and practical method for detecting and estimating the yield of orange fruits in an orchard. Significant differences were observed in yield estimation for two-side and four-side imaging. Accordingly, a combined imaging method including two-side and four-side imaging was proposed for thin and dense canopy, respectively. The map of fruit yield changes showed the spatial distribution of tree yield with a +9.19% error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研工具人完成签到,获得积分10
1秒前
yulia发布了新的文献求助20
1秒前
1秒前
bkagyin应助小巧风华采纳,获得10
1秒前
whutyoyo完成签到,获得积分10
1秒前
dfsdf完成签到,获得积分10
2秒前
wwz发布了新的文献求助10
2秒前
小蚊子发布了新的文献求助10
3秒前
思维隋完成签到 ,获得积分10
3秒前
3秒前
我陈雯雯实名上网完成签到,获得积分10
3秒前
meng发布了新的文献求助50
3秒前
WW发布了新的文献求助30
3秒前
3秒前
温柔的婷完成签到,获得积分10
4秒前
奥里给发布了新的文献求助10
4秒前
5秒前
hhh发布了新的文献求助10
5秒前
科研通AI2S应助小伊采纳,获得10
5秒前
xueyan发布了新的文献求助10
6秒前
6秒前
6秒前
隐形曼青应助哈哈采纳,获得10
6秒前
小蘑菇应助whutyoyo采纳,获得10
6秒前
打打应助狗东西采纳,获得10
7秒前
大模型应助wwz采纳,获得10
7秒前
7秒前
常富育完成签到,获得积分10
8秒前
pwy完成签到,获得积分10
8秒前
NexusExplorer应助Breathe采纳,获得10
8秒前
烟花应助小蚊子采纳,获得10
8秒前
loong发布了新的文献求助10
10秒前
123发布了新的文献求助10
10秒前
奥里给完成签到,获得积分10
10秒前
10秒前
10秒前
tian发布了新的文献求助10
10秒前
ww发布了新的文献求助10
11秒前
认真觅荷发布了新的文献求助10
11秒前
玛卡巴卡完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403