Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions

果园 橙色(颜色) 人工智能 计算机科学 数学 农业工程 园艺 工程类 生物
作者
Hamzeh Mirhaji,Mohsen Soleymani,Abbas Asakereh,Saman Abdanan Mehdizadeh
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:191: 106533-106533 被引量:126
标识
DOI:10.1016/j.compag.2021.106533
摘要

Fruit load estimation is an essential step toward Precision Agriculture (PA) as it helps growers more accurately predict market planning, worker planning, purchase of appropriate equipment and so on. Reliable and accurate estimation of fruit yield in an orchard with hundreds of trees needs automatic methods. In recent years, Deep Learning (DL) has been studied widely and applied in various fields of agriculture. Accordingly, the YOLO detection models were applied to detect and count ripe Dezful native orange in an orchard in southwestern Iran. The models were adapted through transfer learning and trained by Google Colaboratory in the RGB images to detect and count orange fruits. Models performance and accuracy of yield estimation for an orchard with 1115 trees were examined. The process was conducted in 3 steps, including training and testing the different versions of the YOLO models by creating an image dataset of orange trees in different illumination conditions, evaluating the models on 100 sample trees, and finally extracting the yield variation map of the orchard after detecting and counting the oranges on images taken from all the trees in the orchard. The precision, recall, F1-score and mAP of the YOLO-V4 as the best model for orange detection over the test images were 91.23%, 92.8%, 92%, and 90.8%, respectively. The overall performance of the models in nighttime and daytime imaging was not significantly different. The YOLO-V4 model was chosen to use for yield estimation in the orchard. The promising results show that the YOLO models can effectively provide researchers and agricultural activists with a simple and practical method for detecting and estimating the yield of orange fruits in an orchard. Significant differences were observed in yield estimation for two-side and four-side imaging. Accordingly, a combined imaging method including two-side and four-side imaging was proposed for thin and dense canopy, respectively. The map of fruit yield changes showed the spatial distribution of tree yield with a +9.19% error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听雨眠完成签到 ,获得积分10
刚刚
何日完成签到,获得积分10
1秒前
Zhang完成签到,获得积分10
1秒前
司空天磊完成签到,获得积分10
1秒前
keyan完成签到,获得积分10
2秒前
喜悦小猫咪完成签到,获得积分10
3秒前
3秒前
amxl完成签到,获得积分10
3秒前
无私的芹应助feloys采纳,获得10
3秒前
3秒前
lxt发布了新的文献求助10
3秒前
快乐的奕涵完成签到,获得积分10
3秒前
小太阳完成签到,获得积分10
4秒前
蔡6705完成签到,获得积分10
4秒前
小鹅呀完成签到,获得积分10
4秒前
Orange应助jming87采纳,获得10
4秒前
wny完成签到,获得积分10
5秒前
5秒前
yahonyoyoyo发布了新的文献求助10
5秒前
天天完成签到,获得积分10
6秒前
蔡6705发布了新的文献求助10
6秒前
7秒前
7秒前
刘刘完成签到 ,获得积分10
7秒前
默默的巧荷完成签到,获得积分10
8秒前
狂野乌冬面完成签到,获得积分10
8秒前
8秒前
自然的雁芙完成签到 ,获得积分10
8秒前
8秒前
在水一方应助yahonyoyoyo采纳,获得10
8秒前
呼呼虫发布了新的文献求助10
9秒前
CR发布了新的文献求助10
9秒前
桀桀桀完成签到,获得积分10
9秒前
富强民主发布了新的文献求助10
9秒前
jiajia993完成签到,获得积分10
9秒前
9秒前
发如雪完成签到 ,获得积分10
9秒前
AZ完成签到,获得积分10
10秒前
有人应助山260采纳,获得10
11秒前
张雯雯完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478