Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions

果园 橙色(颜色) 人工智能 计算机科学 数学 农业工程 园艺 工程类 生物
作者
Hamzeh Mirhaji,Mohsen Soleymani,Abbas Asakereh,Saman Abdanan Mehdizadeh
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106533-106533 被引量:75
标识
DOI:10.1016/j.compag.2021.106533
摘要

Fruit load estimation is an essential step toward Precision Agriculture (PA) as it helps growers more accurately predict market planning, worker planning, purchase of appropriate equipment and so on. Reliable and accurate estimation of fruit yield in an orchard with hundreds of trees needs automatic methods. In recent years, Deep Learning (DL) has been studied widely and applied in various fields of agriculture. Accordingly, the YOLO detection models were applied to detect and count ripe Dezful native orange in an orchard in southwestern Iran. The models were adapted through transfer learning and trained by Google Colaboratory in the RGB images to detect and count orange fruits. Models performance and accuracy of yield estimation for an orchard with 1115 trees were examined. The process was conducted in 3 steps, including training and testing the different versions of the YOLO models by creating an image dataset of orange trees in different illumination conditions, evaluating the models on 100 sample trees, and finally extracting the yield variation map of the orchard after detecting and counting the oranges on images taken from all the trees in the orchard. The precision, recall, F1-score and mAP of the YOLO-V4 as the best model for orange detection over the test images were 91.23%, 92.8%, 92%, and 90.8%, respectively. The overall performance of the models in nighttime and daytime imaging was not significantly different. The YOLO-V4 model was chosen to use for yield estimation in the orchard. The promising results show that the YOLO models can effectively provide researchers and agricultural activists with a simple and practical method for detecting and estimating the yield of orange fruits in an orchard. Significant differences were observed in yield estimation for two-side and four-side imaging. Accordingly, a combined imaging method including two-side and four-side imaging was proposed for thin and dense canopy, respectively. The map of fruit yield changes showed the spatial distribution of tree yield with a +9.19% error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
长乐完成签到,获得积分10
4秒前
zzzzzxh发布了新的文献求助10
5秒前
传奇3应助谢谢谢谢谢m采纳,获得10
8秒前
8秒前
毛小佳佳发布了新的文献求助30
8秒前
8秒前
9秒前
9秒前
与木完成签到,获得积分10
12秒前
Ava应助liyingyan采纳,获得10
13秒前
koitoyu完成签到,获得积分10
13秒前
123发布了新的文献求助10
13秒前
14秒前
呆萌千凝发布了新的文献求助10
14秒前
15秒前
谢谢谢谢谢m完成签到,获得积分10
15秒前
La-crazy应助与木采纳,获得10
16秒前
36038138完成签到,获得积分10
16秒前
16秒前
youwenjing11发布了新的文献求助10
18秒前
毛小佳佳完成签到,获得积分10
19秒前
田様应助恶恶么v采纳,获得10
19秒前
未语的阳光完成签到 ,获得积分10
19秒前
科研通AI2S应助等等采纳,获得10
20秒前
bkagyin应助公西钧采纳,获得10
21秒前
秾晓豆完成签到,获得积分10
21秒前
帅气天荷完成签到 ,获得积分10
21秒前
涛涛完成签到,获得积分10
21秒前
顾矜应助111采纳,获得10
22秒前
22秒前
宴宴宴完成签到,获得积分10
23秒前
王荣超完成签到,获得积分10
24秒前
24秒前
zzzzzxh完成签到,获得积分10
24秒前
123完成签到 ,获得积分20
25秒前
25秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155941
求助须知:如何正确求助?哪些是违规求助? 2807235
关于积分的说明 7872173
捐赠科研通 2465563
什么是DOI,文献DOI怎么找? 1312264
科研通“疑难数据库(出版商)”最低求助积分说明 629977
版权声明 601905