Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions

果园 橙色(颜色) 人工智能 计算机科学 数学 农业工程 园艺 工程类 生物
作者
Hamzeh Mirhaji,Mohsen Soleymani,Abbas Asakereh,Saman Abdanan Mehdizadeh
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:191: 106533-106533 被引量:75
标识
DOI:10.1016/j.compag.2021.106533
摘要

Fruit load estimation is an essential step toward Precision Agriculture (PA) as it helps growers more accurately predict market planning, worker planning, purchase of appropriate equipment and so on. Reliable and accurate estimation of fruit yield in an orchard with hundreds of trees needs automatic methods. In recent years, Deep Learning (DL) has been studied widely and applied in various fields of agriculture. Accordingly, the YOLO detection models were applied to detect and count ripe Dezful native orange in an orchard in southwestern Iran. The models were adapted through transfer learning and trained by Google Colaboratory in the RGB images to detect and count orange fruits. Models performance and accuracy of yield estimation for an orchard with 1115 trees were examined. The process was conducted in 3 steps, including training and testing the different versions of the YOLO models by creating an image dataset of orange trees in different illumination conditions, evaluating the models on 100 sample trees, and finally extracting the yield variation map of the orchard after detecting and counting the oranges on images taken from all the trees in the orchard. The precision, recall, F1-score and mAP of the YOLO-V4 as the best model for orange detection over the test images were 91.23%, 92.8%, 92%, and 90.8%, respectively. The overall performance of the models in nighttime and daytime imaging was not significantly different. The YOLO-V4 model was chosen to use for yield estimation in the orchard. The promising results show that the YOLO models can effectively provide researchers and agricultural activists with a simple and practical method for detecting and estimating the yield of orange fruits in an orchard. Significant differences were observed in yield estimation for two-side and four-side imaging. Accordingly, a combined imaging method including two-side and four-side imaging was proposed for thin and dense canopy, respectively. The map of fruit yield changes showed the spatial distribution of tree yield with a +9.19% error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明完成签到,获得积分10
刚刚
Ava应助小柯基学从零学起采纳,获得10
1秒前
小蚊子发布了新的文献求助10
1秒前
舒适的石头完成签到,获得积分10
1秒前
慕青应助阳光下的味道采纳,获得10
1秒前
彭于晏应助zjy03259采纳,获得10
2秒前
风趣的小甜瓜完成签到,获得积分10
2秒前
权小夏完成签到 ,获得积分10
2秒前
Akim应助时2采纳,获得10
2秒前
3秒前
丁小只完成签到,获得积分10
3秒前
bruna应助认真的rain采纳,获得30
3秒前
123完成签到,获得积分10
4秒前
6秒前
一只东北鸟完成签到 ,获得积分10
6秒前
上官又莲完成签到,获得积分10
7秒前
小丛雨完成签到,获得积分10
7秒前
8秒前
是莉莉娅完成签到,获得积分10
9秒前
babyhead完成签到,获得积分10
9秒前
星星完成签到,获得积分10
10秒前
cr4zy411完成签到,获得积分10
10秒前
午后狂睡完成签到 ,获得积分10
11秒前
yoowt完成签到,获得积分10
12秒前
罗小罗完成签到 ,获得积分10
12秒前
溟旅完成签到 ,获得积分20
12秒前
12秒前
13秒前
摸鱼划水完成签到 ,获得积分10
14秒前
要减肥小夏完成签到 ,获得积分10
14秒前
WalkToSky完成签到,获得积分10
15秒前
闪闪路人完成签到,获得积分10
15秒前
feng_qi001完成签到,获得积分10
15秒前
满意爆米花完成签到 ,获得积分10
16秒前
天才完成签到,获得积分10
17秒前
怕黑又蓝发布了新的文献求助30
17秒前
JamesPei应助呆萌棒棒糖采纳,获得10
18秒前
认真的一刀完成签到,获得积分10
18秒前
SaturnY完成签到,获得积分10
18秒前
九零后无心完成签到,获得积分10
18秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099877
求助须知:如何正确求助?哪些是违规求助? 2751333
关于积分的说明 7612942
捐赠科研通 2403282
什么是DOI,文献DOI怎么找? 1275217
科研通“疑难数据库(出版商)”最低求助积分说明 616310
版权声明 599053