亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

2-level hierarchical depression recognition method based on task-stimulated and integrated speech features

支持向量机 计算机科学 随机森林 共振峰 语音识别 特征向量 模式识别(心理学) 人工智能 稳健性(进化) 刺激(心理学) 机器学习 心理学 元音 心理治疗师 生物化学 化学 基因
作者
Yujuan Xing,Zhenyu Liu,Gang Li,Zhijie Ding,Bin Hu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:72: 103287-103287 被引量:8
标识
DOI:10.1016/j.bspc.2021.103287
摘要

• A hierarchical classification model was designed considering the task-stimulated features and integrated features for better recognition performance. • I-vector was used to solve the variable length problem of frame level features and overcome speaker and channel variability effects. • The effectiveness of hierarchical classification was verified on different features and their combinations. • Gender-independent and gender-dependent experiments were carried out to test the gender influence on our method. Depression had been paid more and more attention by researchers because of its high prevalence, recurrence, disability and mortality. Speech depression recognition had become a research hotspot due to its advantages of non-invasiveness and easy access to data. However, the problems such as the speech variation in different emotional stimulus, gender impact, the speaker and channel variation and the variable length of frame feature, would have a great impact on recognition performance. In order to solve these problems, a novel 2-level hierarchical depression recognition method was proposed in this paper. It contained two stages. In 1 st -level classification stage, i-vectors were extracted based on spectral features, prosodic features, formants and voice quality of speech segments in different task stimulus respectively. Then, support vector machine (SVM) and random forest (RF) were used to obtain primary results. In the stage of 2 nd -level classification, the results of tasks with significant accuracy differences were aggregated into new integrated features. The final result was achieved on new features by SVM. Our experiments were based on the depression speech database of the Gansu Provincial Key Laboratory of Wearable Computing. The experimental results showed that the proposed method had achieved good results in both gender-independent and gender-dependent experiments. Compared with baseline method and bagging classification, the highest accuracy of our method was raised by 9.62% and 9.49% respectively in gender-independent experiments, and F1 score also got improvement obviously. The results also showed that our method had better robustness on gender effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
0033发布了新的文献求助10
11秒前
15秒前
江山木完成签到,获得积分10
15秒前
莉莉丝完成签到 ,获得积分10
23秒前
唐泽雪穗应助科研通管家采纳,获得10
24秒前
唐泽雪穗应助科研通管家采纳,获得10
24秒前
28秒前
0033完成签到,获得积分20
31秒前
satsuki发布了新的文献求助10
32秒前
Koalas应助0033采纳,获得20
38秒前
小净发布了新的文献求助10
42秒前
46秒前
张智发布了新的文献求助10
51秒前
居无何完成签到 ,获得积分10
1分钟前
科研通AI5应助张智采纳,获得10
1分钟前
andrele发布了新的文献求助10
2分钟前
satsuki完成签到,获得积分10
2分钟前
Jasper应助satsuki采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
小胡爱科研完成签到 ,获得积分10
2分钟前
2分钟前
张智发布了新的文献求助10
3分钟前
3分钟前
周周粥完成签到 ,获得积分10
3分钟前
小宇宙完成签到,获得积分10
3分钟前
春天的粥完成签到 ,获得积分10
3分钟前
长街完成签到,获得积分10
3分钟前
充电宝应助长街采纳,获得10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
ldysaber完成签到,获得积分10
4分钟前
Wwwwww发布了新的文献求助10
5分钟前
李李原上草完成签到 ,获得积分0
5分钟前
Wwwwww完成签到,获得积分10
5分钟前
5分钟前
科研通AI6应助kendall采纳,获得100
5分钟前
唐泽雪穗应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077997
求助须知:如何正确求助?哪些是违规求助? 4296923
关于积分的说明 13387571
捐赠科研通 4119458
什么是DOI,文献DOI怎么找? 2256007
邀请新用户注册赠送积分活动 1260335
关于科研通互助平台的介绍 1193757