清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

2-level hierarchical depression recognition method based on task-stimulated and integrated speech features

支持向量机 计算机科学 随机森林 共振峰 语音识别 特征向量 模式识别(心理学) 人工智能 稳健性(进化) 刺激(心理学) 机器学习 心理学 元音 心理治疗师 生物化学 化学 基因
作者
Yujuan Xing,Zhenyu Liu,Gang Li,Zhijie Ding,Bin Hu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103287-103287 被引量:8
标识
DOI:10.1016/j.bspc.2021.103287
摘要

• A hierarchical classification model was designed considering the task-stimulated features and integrated features for better recognition performance. • I-vector was used to solve the variable length problem of frame level features and overcome speaker and channel variability effects. • The effectiveness of hierarchical classification was verified on different features and their combinations. • Gender-independent and gender-dependent experiments were carried out to test the gender influence on our method. Depression had been paid more and more attention by researchers because of its high prevalence, recurrence, disability and mortality. Speech depression recognition had become a research hotspot due to its advantages of non-invasiveness and easy access to data. However, the problems such as the speech variation in different emotional stimulus, gender impact, the speaker and channel variation and the variable length of frame feature, would have a great impact on recognition performance. In order to solve these problems, a novel 2-level hierarchical depression recognition method was proposed in this paper. It contained two stages. In 1 st -level classification stage, i-vectors were extracted based on spectral features, prosodic features, formants and voice quality of speech segments in different task stimulus respectively. Then, support vector machine (SVM) and random forest (RF) were used to obtain primary results. In the stage of 2 nd -level classification, the results of tasks with significant accuracy differences were aggregated into new integrated features. The final result was achieved on new features by SVM. Our experiments were based on the depression speech database of the Gansu Provincial Key Laboratory of Wearable Computing. The experimental results showed that the proposed method had achieved good results in both gender-independent and gender-dependent experiments. Compared with baseline method and bagging classification, the highest accuracy of our method was raised by 9.62% and 9.49% respectively in gender-independent experiments, and F1 score also got improvement obviously. The results also showed that our method had better robustness on gender effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
npknpk完成签到,获得积分10
3秒前
Orange应助Ajay采纳,获得30
21秒前
雪山飞龙完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
Ajay完成签到 ,获得积分10
1分钟前
Klaus完成签到 ,获得积分10
1分钟前
胖小羊完成签到 ,获得积分10
2分钟前
方白秋完成签到,获得积分0
2分钟前
2分钟前
Ajay发布了新的文献求助30
2分钟前
CipherSage应助丽海张采纳,获得30
3分钟前
赵一完成签到 ,获得积分10
3分钟前
3分钟前
Prometheusss发布了新的文献求助10
3分钟前
丽海张发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
zsmj23完成签到 ,获得积分0
3分钟前
文静身边充满小确幸完成签到 ,获得积分10
4分钟前
4分钟前
Prometheusss发布了新的文献求助10
4分钟前
Prometheusss完成签到,获得积分10
4分钟前
4分钟前
深海理疗发布了新的文献求助10
4分钟前
al完成签到 ,获得积分0
5分钟前
Prometheusss发布了新的文献求助10
5分钟前
下文献的蜉蝣完成签到 ,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
洁净百川完成签到 ,获得积分10
6分钟前
6分钟前
Prometheusss发布了新的文献求助10
6分钟前
fufufu123完成签到 ,获得积分10
7分钟前
nuoberry发布了新的文献求助30
7分钟前
景安白完成签到 ,获得积分10
7分钟前
7分钟前
nuoberry发布了新的文献求助10
7分钟前
科研通AI2S应助景安白采纳,获得30
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583