2-level hierarchical depression recognition method based on task-stimulated and integrated speech features

支持向量机 计算机科学 随机森林 共振峰 语音识别 特征向量 模式识别(心理学) 人工智能 稳健性(进化) 刺激(心理学) 机器学习 心理学 基因 生物化学 化学 心理治疗师 元音
作者
Yujuan Xing,Zhenyu Liu,Gang Li,Zhijie Ding,Bin Hu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:72: 103287-103287 被引量:8
标识
DOI:10.1016/j.bspc.2021.103287
摘要

• A hierarchical classification model was designed considering the task-stimulated features and integrated features for better recognition performance. • I-vector was used to solve the variable length problem of frame level features and overcome speaker and channel variability effects. • The effectiveness of hierarchical classification was verified on different features and their combinations. • Gender-independent and gender-dependent experiments were carried out to test the gender influence on our method. Depression had been paid more and more attention by researchers because of its high prevalence, recurrence, disability and mortality. Speech depression recognition had become a research hotspot due to its advantages of non-invasiveness and easy access to data. However, the problems such as the speech variation in different emotional stimulus, gender impact, the speaker and channel variation and the variable length of frame feature, would have a great impact on recognition performance. In order to solve these problems, a novel 2-level hierarchical depression recognition method was proposed in this paper. It contained two stages. In 1 st -level classification stage, i-vectors were extracted based on spectral features, prosodic features, formants and voice quality of speech segments in different task stimulus respectively. Then, support vector machine (SVM) and random forest (RF) were used to obtain primary results. In the stage of 2 nd -level classification, the results of tasks with significant accuracy differences were aggregated into new integrated features. The final result was achieved on new features by SVM. Our experiments were based on the depression speech database of the Gansu Provincial Key Laboratory of Wearable Computing. The experimental results showed that the proposed method had achieved good results in both gender-independent and gender-dependent experiments. Compared with baseline method and bagging classification, the highest accuracy of our method was raised by 9.62% and 9.49% respectively in gender-independent experiments, and F1 score also got improvement obviously. The results also showed that our method had better robustness on gender effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Michelle发布了新的文献求助10
2秒前
4秒前
4秒前
Orange应助子车半邪采纳,获得10
4秒前
乖乖完成签到,获得积分20
5秒前
6秒前
李健应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得30
7秒前
Winnie应助科研通管家采纳,获得50
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
8秒前
ShowMaker应助科研通管家采纳,获得30
8秒前
李健应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
Zhang应助科研通管家采纳,获得10
8秒前
kento应助科研通管家采纳,获得100
8秒前
ll发布了新的文献求助10
9秒前
zjz发布了新的文献求助10
9秒前
Echo完成签到,获得积分10
9秒前
Spring发布了新的文献求助20
10秒前
立冬完成签到,获得积分10
10秒前
DD完成签到,获得积分10
10秒前
感性的曼凝完成签到 ,获得积分10
10秒前
万能图书馆应助慕航采纳,获得10
11秒前
轻松拿下发布了新的文献求助10
11秒前
小马日常挨打完成签到 ,获得积分10
12秒前
zhl完成签到,获得积分10
12秒前
Yochamme完成签到,获得积分10
13秒前
geo关注了科研通微信公众号
14秒前
shanks发布了新的文献求助10
14秒前
安好完成签到,获得积分20
14秒前
15秒前
18秒前
所所应助pumpkin采纳,获得30
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154423
求助须知:如何正确求助?哪些是违规求助? 2805324
关于积分的说明 7864266
捐赠科研通 2463518
什么是DOI,文献DOI怎么找? 1311381
科研通“疑难数据库(出版商)”最低求助积分说明 629574
版权声明 601821