清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

2-level hierarchical depression recognition method based on task-stimulated and integrated speech features

支持向量机 计算机科学 随机森林 共振峰 语音识别 特征向量 模式识别(心理学) 人工智能 稳健性(进化) 刺激(心理学) 机器学习 心理学 元音 心理治疗师 生物化学 化学 基因
作者
Yujuan Xing,Zhenyu Liu,Gang Li,Zhijie Ding,Bin Hu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:72: 103287-103287 被引量:8
标识
DOI:10.1016/j.bspc.2021.103287
摘要

• A hierarchical classification model was designed considering the task-stimulated features and integrated features for better recognition performance. • I-vector was used to solve the variable length problem of frame level features and overcome speaker and channel variability effects. • The effectiveness of hierarchical classification was verified on different features and their combinations. • Gender-independent and gender-dependent experiments were carried out to test the gender influence on our method. Depression had been paid more and more attention by researchers because of its high prevalence, recurrence, disability and mortality. Speech depression recognition had become a research hotspot due to its advantages of non-invasiveness and easy access to data. However, the problems such as the speech variation in different emotional stimulus, gender impact, the speaker and channel variation and the variable length of frame feature, would have a great impact on recognition performance. In order to solve these problems, a novel 2-level hierarchical depression recognition method was proposed in this paper. It contained two stages. In 1 st -level classification stage, i-vectors were extracted based on spectral features, prosodic features, formants and voice quality of speech segments in different task stimulus respectively. Then, support vector machine (SVM) and random forest (RF) were used to obtain primary results. In the stage of 2 nd -level classification, the results of tasks with significant accuracy differences were aggregated into new integrated features. The final result was achieved on new features by SVM. Our experiments were based on the depression speech database of the Gansu Provincial Key Laboratory of Wearable Computing. The experimental results showed that the proposed method had achieved good results in both gender-independent and gender-dependent experiments. Compared with baseline method and bagging classification, the highest accuracy of our method was raised by 9.62% and 9.49% respectively in gender-independent experiments, and F1 score also got improvement obviously. The results also showed that our method had better robustness on gender effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然一德完成签到,获得积分10
9秒前
清秀灵薇完成签到,获得积分10
12秒前
mathmotive完成签到,获得积分20
15秒前
丁老三完成签到 ,获得积分10
15秒前
fei完成签到 ,获得积分10
29秒前
三个气的大门完成签到 ,获得积分10
37秒前
幽默滑板完成签到,获得积分10
44秒前
郭俊秀完成签到 ,获得积分10
52秒前
胡可完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
梵莫发布了新的文献求助10
1分钟前
Wen完成签到 ,获得积分10
1分钟前
云下完成签到 ,获得积分10
1分钟前
aaiirrii完成签到,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
2分钟前
Sandy应助土豆··采纳,获得20
2分钟前
WittingGU完成签到,获得积分0
2分钟前
仁和完成签到 ,获得积分10
2分钟前
2分钟前
噼里啪啦完成签到 ,获得积分10
2分钟前
小龙仔123完成签到 ,获得积分20
3分钟前
大水完成签到 ,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
通科研完成签到 ,获得积分10
3分钟前
aq22完成签到 ,获得积分10
3分钟前
xdd完成签到 ,获得积分10
3分钟前
风华完成签到,获得积分10
3分钟前
3分钟前
herpes完成签到 ,获得积分10
3分钟前
GGBond完成签到 ,获得积分10
4分钟前
livinglast完成签到 ,获得积分10
4分钟前
4分钟前
Rondab应助雪山飞龙采纳,获得10
4分钟前
梵莫完成签到,获得积分10
4分钟前
sherry完成签到 ,获得积分10
4分钟前
Young完成签到 ,获得积分10
4分钟前
xue完成签到 ,获得积分10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
林利芳完成签到 ,获得积分0
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968521
求助须知:如何正确求助?哪些是违规求助? 3513341
关于积分的说明 11167298
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794434
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664