Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections

萼片 灵敏度(控制系统) 生物 园艺 植物 工程类 电子工程 雄蕊 花粉
作者
Sanja Brdar,Marko Panić,Esther Hogeveen-van Echtelt,Manon Mensink,Grbović Željana,Ernst Woltering,Aneesh Chauhan
出处
期刊:Scientific Reports [Springer Nature]
卷期号:11 (1) 被引量:5
标识
DOI:10.1038/s41598-021-02302-2
摘要

Tomato is an important commercial product which is perishable by nature and highly susceptible to fungal incidence once it is harvested. Not all tomatoes are equally vulnerable to pathogenic fungi, and an early detection of the vulnerable ones can help in taking timely preventive actions, ranging from isolating tomato batches to adjusting storage conditions, but also in making right business decisions like dynamic pricing based on quality or better shelf life estimate. More importantly, early detection of vulnerable produce can help in taking timely actions to minimize potential post-harvest losses. This paper investigates Near-infrared (NIR) hyperspectral imaging (1000-1700 nm) and machine learning to build models to automatically predict the susceptibility of sepals of recently harvested tomatoes to future fungal infections. Hyperspectral images of newly harvested tomatoes (cultivar Brioso) from 5 different growers were acquired before the onset of any visible fungal infection. After imaging, the tomatoes were placed under controlled conditions suited for fungal germination and growth for a 4-day period, and then imaged using normal color cameras. All sepals in the color images were ranked for fungal severity using crowdsourcing, and the final severity of each sepal was fused using principal component analysis. A novel hyperspectral data processing pipeline is presented which was used to automatically segment the tomato sepals from spectral images with multiple tomatoes connected via a truss. The key modelling question addressed in this research is whether there is a correlation between the hyperspectral data captured at harvest and the fungal infection observed 4 days later. Using 10-fold and group k-fold cross-validation, XG-Boost and Random Forest based regression models were trained on the features derived from the hyperspectral data corresponding to each sepal in the training set and tested on hold out test set. The best model found a Pearson correlation of 0.837, showing that there is strong linear correlation between the NIR spectra and the future fungal severity of the sepal. The sepal specific predictions were aggregated to predict the susceptibility of individual tomatoes, and a correlation of 0.92 was found. Besides modelling, focus is also on model interpretation, particularly to understand which spectral features are most relevant to model prediction. Two approaches to model interpretation were explored, feature importance and SHAP (SHapley Additive exPlanations), resulting in similar conclusions that the NIR range between 1390-1420 nm contributes most to the model's final decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兔子发布了新的文献求助10
1秒前
Sy完成签到,获得积分10
2秒前
chimsu发布了新的文献求助20
2秒前
rr发布了新的文献求助10
2秒前
箴言完成签到,获得积分10
3秒前
科研通AI6应助阿尔宙斯采纳,获得10
6秒前
Bluebulu完成签到,获得积分10
6秒前
希望天下0贩的0应助Joker采纳,获得10
6秒前
baiseqiutian完成签到,获得积分10
6秒前
XIAOFA完成签到,获得积分10
6秒前
小鹿呀完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
Brett_Liu完成签到,获得积分10
9秒前
酷酷一笑完成签到,获得积分10
10秒前
Link完成签到,获得积分10
10秒前
10秒前
11秒前
LPJ完成签到,获得积分10
11秒前
迷路荷花完成签到,获得积分20
11秒前
小马发布了新的文献求助10
11秒前
12秒前
shaomei发布了新的文献求助30
12秒前
12秒前
充电宝应助nextconnie采纳,获得10
13秒前
Ting应助qq采纳,获得20
13秒前
美好向日葵完成签到,获得积分10
13秒前
小阿发发布了新的文献求助30
13秒前
14秒前
14秒前
14秒前
zhull发布了新的文献求助20
15秒前
悦悦发布了新的文献求助10
15秒前
mashibeo发布了新的文献求助10
15秒前
yang发布了新的文献求助10
16秒前
可爱的函函应助wxxz采纳,获得10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004