Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections

萼片 灵敏度(控制系统) 生物 园艺 植物 工程类 电子工程 雄蕊 花粉
作者
Sanja Brdar,Marko Panić,Esther Hogeveen-van Echtelt,Manon Mensink,Grbović Željana,Ernst Woltering,Aneesh Chauhan
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:11 (1) 被引量:5
标识
DOI:10.1038/s41598-021-02302-2
摘要

Tomato is an important commercial product which is perishable by nature and highly susceptible to fungal incidence once it is harvested. Not all tomatoes are equally vulnerable to pathogenic fungi, and an early detection of the vulnerable ones can help in taking timely preventive actions, ranging from isolating tomato batches to adjusting storage conditions, but also in making right business decisions like dynamic pricing based on quality or better shelf life estimate. More importantly, early detection of vulnerable produce can help in taking timely actions to minimize potential post-harvest losses. This paper investigates Near-infrared (NIR) hyperspectral imaging (1000-1700 nm) and machine learning to build models to automatically predict the susceptibility of sepals of recently harvested tomatoes to future fungal infections. Hyperspectral images of newly harvested tomatoes (cultivar Brioso) from 5 different growers were acquired before the onset of any visible fungal infection. After imaging, the tomatoes were placed under controlled conditions suited for fungal germination and growth for a 4-day period, and then imaged using normal color cameras. All sepals in the color images were ranked for fungal severity using crowdsourcing, and the final severity of each sepal was fused using principal component analysis. A novel hyperspectral data processing pipeline is presented which was used to automatically segment the tomato sepals from spectral images with multiple tomatoes connected via a truss. The key modelling question addressed in this research is whether there is a correlation between the hyperspectral data captured at harvest and the fungal infection observed 4 days later. Using 10-fold and group k-fold cross-validation, XG-Boost and Random Forest based regression models were trained on the features derived from the hyperspectral data corresponding to each sepal in the training set and tested on hold out test set. The best model found a Pearson correlation of 0.837, showing that there is strong linear correlation between the NIR spectra and the future fungal severity of the sepal. The sepal specific predictions were aggregated to predict the susceptibility of individual tomatoes, and a correlation of 0.92 was found. Besides modelling, focus is also on model interpretation, particularly to understand which spectral features are most relevant to model prediction. Two approaches to model interpretation were explored, feature importance and SHAP (SHapley Additive exPlanations), resulting in similar conclusions that the NIR range between 1390-1420 nm contributes most to the model's final decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芒果完成签到,获得积分10
1秒前
英俊水池完成签到,获得积分10
1秒前
2秒前
一路芬芳发布了新的文献求助10
2秒前
2秒前
懒虫儿坤完成签到,获得积分10
2秒前
开心不评完成签到 ,获得积分10
3秒前
debu9完成签到,获得积分10
4秒前
soory完成签到,获得积分10
7秒前
宓天问完成签到,获得积分10
9秒前
9秒前
bluesky完成签到,获得积分10
10秒前
叽里呱啦完成签到 ,获得积分10
10秒前
Distance发布了新的文献求助10
12秒前
13秒前
13秒前
专注灵凡完成签到,获得积分10
13秒前
Stageruner完成签到,获得积分10
13秒前
kiyo_v完成签到,获得积分10
13秒前
黄超超发布了新的文献求助10
14秒前
落寞剑成完成签到 ,获得积分10
14秒前
七子完成签到,获得积分10
14秒前
klio完成签到 ,获得积分10
15秒前
zzx396完成签到,获得积分0
16秒前
one完成签到 ,获得积分10
17秒前
十五完成签到,获得积分10
17秒前
ptjam完成签到 ,获得积分10
18秒前
神勇的晟睿完成签到 ,获得积分10
19秒前
19秒前
曾珍完成签到 ,获得积分10
19秒前
Muhi完成签到,获得积分10
19秒前
19秒前
自带蓝牙的土豆完成签到 ,获得积分10
20秒前
青羽落霞完成签到 ,获得积分10
21秒前
抹颜完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
26秒前
胡图图完成签到,获得积分10
27秒前
睡觉大王完成签到 ,获得积分10
28秒前
29秒前
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022