Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections

萼片 灵敏度(控制系统) 生物 园艺 植物 工程类 电子工程 雄蕊 花粉
作者
Sanja Brdar,Marko Panić,Esther Hogeveen-van Echtelt,Manon Mensink,Grbović Željana,Ernst Woltering,Aneesh Chauhan
出处
期刊:Scientific Reports [Springer Nature]
卷期号:11 (1) 被引量:5
标识
DOI:10.1038/s41598-021-02302-2
摘要

Tomato is an important commercial product which is perishable by nature and highly susceptible to fungal incidence once it is harvested. Not all tomatoes are equally vulnerable to pathogenic fungi, and an early detection of the vulnerable ones can help in taking timely preventive actions, ranging from isolating tomato batches to adjusting storage conditions, but also in making right business decisions like dynamic pricing based on quality or better shelf life estimate. More importantly, early detection of vulnerable produce can help in taking timely actions to minimize potential post-harvest losses. This paper investigates Near-infrared (NIR) hyperspectral imaging (1000-1700 nm) and machine learning to build models to automatically predict the susceptibility of sepals of recently harvested tomatoes to future fungal infections. Hyperspectral images of newly harvested tomatoes (cultivar Brioso) from 5 different growers were acquired before the onset of any visible fungal infection. After imaging, the tomatoes were placed under controlled conditions suited for fungal germination and growth for a 4-day period, and then imaged using normal color cameras. All sepals in the color images were ranked for fungal severity using crowdsourcing, and the final severity of each sepal was fused using principal component analysis. A novel hyperspectral data processing pipeline is presented which was used to automatically segment the tomato sepals from spectral images with multiple tomatoes connected via a truss. The key modelling question addressed in this research is whether there is a correlation between the hyperspectral data captured at harvest and the fungal infection observed 4 days later. Using 10-fold and group k-fold cross-validation, XG-Boost and Random Forest based regression models were trained on the features derived from the hyperspectral data corresponding to each sepal in the training set and tested on hold out test set. The best model found a Pearson correlation of 0.837, showing that there is strong linear correlation between the NIR spectra and the future fungal severity of the sepal. The sepal specific predictions were aggregated to predict the susceptibility of individual tomatoes, and a correlation of 0.92 was found. Besides modelling, focus is also on model interpretation, particularly to understand which spectral features are most relevant to model prediction. Two approaches to model interpretation were explored, feature importance and SHAP (SHapley Additive exPlanations), resulting in similar conclusions that the NIR range between 1390-1420 nm contributes most to the model's final decision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhhan616发布了新的文献求助10
1秒前
大模型应助TaoJ采纳,获得10
1秒前
假面绅士发布了新的文献求助10
2秒前
2秒前
111222333完成签到,获得积分10
3秒前
lzg完成签到,获得积分10
3秒前
4秒前
JamesPei应助NeoWu采纳,获得10
5秒前
能干的小伙完成签到 ,获得积分10
5秒前
寒安完成签到,获得积分10
6秒前
指南针指北完成签到 ,获得积分10
7秒前
8秒前
tangguo完成签到,获得积分10
8秒前
LaTeXer应助怕黑的飞柏采纳,获得50
8秒前
111222333发布了新的文献求助10
9秒前
贰鸟应助jojo采纳,获得20
11秒前
量子星尘发布了新的文献求助30
13秒前
隐形曼青应助唠叨的白曼采纳,获得10
13秒前
13秒前
13秒前
所所应助如初采纳,获得10
13秒前
科目三应助QinQin采纳,获得10
14秒前
14秒前
无花果应助优美紫槐采纳,获得10
14秒前
熊冰清完成签到,获得积分20
14秒前
小二郎应助lzg采纳,获得10
14秒前
深情安青应助那么采纳,获得10
15秒前
研友_VZG7GZ应助周才采纳,获得10
15秒前
曾经的建辉完成签到,获得积分10
15秒前
16秒前
17秒前
LZH发布了新的文献求助10
18秒前
果果发布了新的文献求助30
19秒前
19秒前
19秒前
20秒前
柯不正发布了新的文献求助30
20秒前
kei发布了新的文献求助10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5730272
求助须知:如何正确求助?哪些是违规求助? 5322398
关于积分的说明 15318370
捐赠科研通 4876855
什么是DOI,文献DOI怎么找? 2619709
邀请新用户注册赠送积分活动 1569121
关于科研通互助平台的介绍 1525755