Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections

萼片 灵敏度(控制系统) 生物 园艺 植物 工程类 电子工程 雄蕊 花粉
作者
Sanja Brdar,Marko Panić,Esther Hogeveen-van Echtelt,Manon Mensink,Grbović Željana,Ernst Woltering,Aneesh Chauhan
出处
期刊:Scientific Reports [Springer Nature]
卷期号:11 (1) 被引量:5
标识
DOI:10.1038/s41598-021-02302-2
摘要

Tomato is an important commercial product which is perishable by nature and highly susceptible to fungal incidence once it is harvested. Not all tomatoes are equally vulnerable to pathogenic fungi, and an early detection of the vulnerable ones can help in taking timely preventive actions, ranging from isolating tomato batches to adjusting storage conditions, but also in making right business decisions like dynamic pricing based on quality or better shelf life estimate. More importantly, early detection of vulnerable produce can help in taking timely actions to minimize potential post-harvest losses. This paper investigates Near-infrared (NIR) hyperspectral imaging (1000-1700 nm) and machine learning to build models to automatically predict the susceptibility of sepals of recently harvested tomatoes to future fungal infections. Hyperspectral images of newly harvested tomatoes (cultivar Brioso) from 5 different growers were acquired before the onset of any visible fungal infection. After imaging, the tomatoes were placed under controlled conditions suited for fungal germination and growth for a 4-day period, and then imaged using normal color cameras. All sepals in the color images were ranked for fungal severity using crowdsourcing, and the final severity of each sepal was fused using principal component analysis. A novel hyperspectral data processing pipeline is presented which was used to automatically segment the tomato sepals from spectral images with multiple tomatoes connected via a truss. The key modelling question addressed in this research is whether there is a correlation between the hyperspectral data captured at harvest and the fungal infection observed 4 days later. Using 10-fold and group k-fold cross-validation, XG-Boost and Random Forest based regression models were trained on the features derived from the hyperspectral data corresponding to each sepal in the training set and tested on hold out test set. The best model found a Pearson correlation of 0.837, showing that there is strong linear correlation between the NIR spectra and the future fungal severity of the sepal. The sepal specific predictions were aggregated to predict the susceptibility of individual tomatoes, and a correlation of 0.92 was found. Besides modelling, focus is also on model interpretation, particularly to understand which spectral features are most relevant to model prediction. Two approaches to model interpretation were explored, feature importance and SHAP (SHapley Additive exPlanations), resulting in similar conclusions that the NIR range between 1390-1420 nm contributes most to the model's final decision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘎嘎的鸡神完成签到,获得积分10
2秒前
大师完成签到,获得积分10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
T_MC郭发布了新的文献求助10
3秒前
英姑应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
852应助科研通管家采纳,获得10
4秒前
发发发发发完成签到,获得积分10
4秒前
Beautieat1发布了新的文献求助10
4秒前
滴滴滴发布了新的文献求助10
5秒前
more应助小张不吃香菜采纳,获得20
5秒前
FashionBoy应助jinying采纳,获得10
5秒前
Rockabye完成签到,获得积分10
6秒前
chase发布了新的文献求助10
8秒前
11秒前
12秒前
more应助聪明的破茧采纳,获得20
12秒前
13秒前
小罗不饿完成签到,获得积分10
14秒前
噜噜噜完成签到,获得积分10
14秒前
15秒前
15秒前
在水一方应助scienceL采纳,获得10
15秒前
fifteen发布了新的文献求助10
16秒前
wuming完成签到,获得积分10
16秒前
噜噜噜发布了新的文献求助10
17秒前
小二郎应助xxy991007采纳,获得10
17秒前
17秒前
19秒前
19秒前
车幻梦发布了新的文献求助10
19秒前
筱筱完成签到,获得积分20
19秒前
大圆饼子发布了新的文献求助10
19秒前
ss发布了新的文献求助10
20秒前
皮皮发布了新的文献求助10
21秒前
asdfj应助整齐的不评采纳,获得10
21秒前
fairytail完成签到 ,获得积分20
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153407
求助须知:如何正确求助?哪些是违规求助? 2804624
关于积分的说明 7860589
捐赠科研通 2462588
什么是DOI,文献DOI怎么找? 1310818
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794