亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TMP origami jumping mechanism with nonlinear stiffness

跳跃的 非线性系统 刚度 跳跃 控制理论(社会学) 结构工程 材料科学 机械工程 机械 纳米技术 计算机科学 工程类 物理 人工智能 控制(管理) 地质学 古生物学 量子力学
作者
Sahand Sadeghi,Samuel Allison,Blake Bestill,Suyi Li
出处
期刊:Smart Materials and Structures [IOP Publishing]
卷期号:30 (6): 065002-065002 被引量:6
标识
DOI:10.1088/1361-665x/abf5b2
摘要

Abstract Via numerical simulation and experimental assessment, this study examines the use of origami folding to develop robotic jumping mechanisms with tailored nonlinear stiffness to improve dynamic performance. We propose a multifunctional structure where the load-carrying skeleton of the structure acts as the energy-storage medium at the same time. Specifically, we use Tachi–Miura polyhedron (TMP) bellow origami—which exhibits a nonlinear ‘strain-softening’ force-displacement curve—as a jumping robotic skeleton with embedded energy storage. TMP’s nonlinear stiffness allows it to store more energy than a linear spring and offers improved jumping height and airtime. Moreover, the nonlinearity can be tailored by directly changing the underlying TMP crease geometry. A critical challenge is to minimize the TMP’s hysteresis and energy loss during its compression stage right before jumping. So we used the plastically annealed lamina emergent origami (PALEO) concept to modify the TMP creases. PALEO increases the folding limit before plastic deformation occurs, thus improving the overall strain energy retention. Jumping experiments confirmed that a nonlinear TMP mechanism achieved roughly 9% improvement in air time and a 13% improvement in jumping height compared to a ‘control’ TMP sample with a relatively linear stiffness. This study’s results validate the advantages of using origami in robotic jumping mechanisms and demonstrate the benefits of utilizing nonlinear spring elements for improving jumping performance. Therefore, they could foster a new family of energetically efficient jumping mechanisms with optimized performance in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
7秒前
舒服的觅夏完成签到,获得积分10
11秒前
12秒前
赘婿应助shinn采纳,获得10
20秒前
阿里完成签到,获得积分10
22秒前
1111关注了科研通微信公众号
24秒前
25秒前
动听的涵山完成签到,获得积分10
27秒前
思源应助郴欧尼采纳,获得10
27秒前
耕云钓月发布了新的文献求助10
29秒前
长安宁完成签到 ,获得积分10
30秒前
31秒前
36秒前
赘婿应助耕云钓月采纳,获得10
38秒前
shinn发布了新的文献求助10
39秒前
Ava应助shinn采纳,获得10
44秒前
45秒前
46秒前
56秒前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
然463完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夜夜景发布了新的文献求助10
1分钟前
1分钟前
美美发布了新的文献求助10
1分钟前
李爱国应助shinn采纳,获得10
1分钟前
忆修发布了新的文献求助30
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247