Multi-Scale Sparse Graph Convolutional Network For the Assessment of Parkinsonian Gait

判别式 计算机科学 人工智能 卷积神经网络 深度学习 图形 可视化 模式识别(心理学) 机器学习 理论计算机科学
作者
Rui Guo,Xiangxin Shao,Chencheng Zhang,Xiaohua Qian
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 1583-1594 被引量:45
标识
DOI:10.1109/tmm.2021.3068609
摘要

Automated assessment of patients with Parkinson's disease (PD) is urgently required in clinical practice to improve the diagnostic efficiency and objectivity and to remotely monitor the motor disorder symptoms and general health of these patients, especially in view of the travel restrictions due to the recent coronavirus epidemic. Gait motor disorder is one of the critical manifestations of PD, and automated assessment of gait is vital to realize automated assessment of PD patients. To this end, we propose a novel two-stream spatial-temporal attention graph convolutional network (2s-ST-AGCN) for video assessment of PD gait motor disorder. Specifically, the skeleton sequence of human body is extracted from videos to construct spatial-temporal graphs of joints and bones, and a two-stream spatial-temporal graph convolutional network is then built to simultaneously model the static spatial information and dynamic temporal variations. The multi-scale spatial-temporal attention-aware mechanism is also designed to effectively extract the discriminative spatial-temporal features. The deep supervision strategy is then embedded to minimize classification errors, thereby guiding the weight update process of the hidden layer to promote significant discriminative features. Besides, two model-driven terms are integrated into this deep learning framework to strengthen multi-scale similarity in the deep supervision and realize sparsification of discriminative features. Extensive experiments on the clinical video dataset show that the proposed model exhibits good performance with an accuracy of 65.66% and an acceptable accuracy of 98.90%, which is much better than that of the existing sensor- and vision-based methods for Parkinsonian gait assessment. Thus, the proposed method is potentially useful for assessing PD gait motor disorder in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒天抒完成签到,获得积分10
1秒前
yar完成签到 ,获得积分10
1秒前
213驳回了李健应助
1秒前
姚序东完成签到,获得积分10
1秒前
T_MC郭完成签到,获得积分10
2秒前
ssk完成签到,获得积分10
2秒前
MUWENYING完成签到,获得积分10
4秒前
打打应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
yj发布了新的文献求助30
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
5秒前
Stella应助科研通管家采纳,获得30
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
华青ww完成签到,获得积分10
6秒前
几许星河皓月完成签到 ,获得积分10
6秒前
8秒前
梅夕阳完成签到,获得积分10
9秒前
淡淡丹妗发布了新的文献求助10
9秒前
jerry完成签到,获得积分10
10秒前
饱满一手完成签到 ,获得积分10
10秒前
务实雁梅完成签到,获得积分10
12秒前
yemao发布了新的文献求助10
12秒前
vergil发布了新的文献求助10
13秒前
七月星河完成签到 ,获得积分10
14秒前
xcuwlj完成签到 ,获得积分10
15秒前
17秒前
透明木头完成签到,获得积分10
18秒前
虚幻的凤完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600022
求助须知:如何正确求助?哪些是违规求助? 4685803
关于积分的说明 14839504
捐赠科研通 4674748
什么是DOI,文献DOI怎么找? 2538486
邀请新用户注册赠送积分活动 1505640
关于科研通互助平台的介绍 1471109