Multi-Scale Sparse Graph Convolutional Network For the Assessment of Parkinsonian Gait

判别式 计算机科学 人工智能 卷积神经网络 深度学习 图形 可视化 模式识别(心理学) 机器学习 理论计算机科学
作者
Rui Guo,Xiangxin Shao,Chencheng Zhang,Xiaohua Qian
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 1583-1594 被引量:45
标识
DOI:10.1109/tmm.2021.3068609
摘要

Automated assessment of patients with Parkinson's disease (PD) is urgently required in clinical practice to improve the diagnostic efficiency and objectivity and to remotely monitor the motor disorder symptoms and general health of these patients, especially in view of the travel restrictions due to the recent coronavirus epidemic. Gait motor disorder is one of the critical manifestations of PD, and automated assessment of gait is vital to realize automated assessment of PD patients. To this end, we propose a novel two-stream spatial-temporal attention graph convolutional network (2s-ST-AGCN) for video assessment of PD gait motor disorder. Specifically, the skeleton sequence of human body is extracted from videos to construct spatial-temporal graphs of joints and bones, and a two-stream spatial-temporal graph convolutional network is then built to simultaneously model the static spatial information and dynamic temporal variations. The multi-scale spatial-temporal attention-aware mechanism is also designed to effectively extract the discriminative spatial-temporal features. The deep supervision strategy is then embedded to minimize classification errors, thereby guiding the weight update process of the hidden layer to promote significant discriminative features. Besides, two model-driven terms are integrated into this deep learning framework to strengthen multi-scale similarity in the deep supervision and realize sparsification of discriminative features. Extensive experiments on the clinical video dataset show that the proposed model exhibits good performance with an accuracy of 65.66% and an acceptable accuracy of 98.90%, which is much better than that of the existing sensor- and vision-based methods for Parkinsonian gait assessment. Thus, the proposed method is potentially useful for assessing PD gait motor disorder in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意的迎南完成签到 ,获得积分10
3秒前
yuyu发布了新的文献求助10
5秒前
8秒前
12秒前
lzdyyy发布了新的文献求助10
12秒前
害怕的不评完成签到,获得积分10
13秒前
跳跳熊完成签到,获得积分10
13秒前
青青完成签到 ,获得积分10
15秒前
Jasper应助直率的花生采纳,获得10
17秒前
18秒前
二三发布了新的文献求助10
18秒前
18秒前
紫薯球完成签到,获得积分10
20秒前
香蕉觅云应助Bonnie采纳,获得10
20秒前
hwq123完成签到,获得积分10
21秒前
zhuanghj5完成签到 ,获得积分10
22秒前
副本完成签到 ,获得积分10
22秒前
言无间发布了新的文献求助20
22秒前
科研菜狗发布了新的文献求助10
22秒前
暄暄完成签到 ,获得积分10
22秒前
Akim应助Eureka采纳,获得10
24秒前
懒羊羊发布了新的文献求助10
25秒前
Zer完成签到,获得积分10
26秒前
美丽秋蝶完成签到,获得积分20
30秒前
Ava应助二三采纳,获得10
31秒前
32秒前
cmq完成签到 ,获得积分10
32秒前
32秒前
37秒前
SS关闭了SS文献求助
37秒前
邓云峰888完成签到,获得积分10
37秒前
lzdyyy发布了新的文献求助10
37秒前
曼曼发布了新的文献求助10
37秒前
40秒前
41秒前
41秒前
41秒前
alt发布了新的文献求助10
45秒前
年轻蓝发布了新的文献求助10
45秒前
刻苦冰颜发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343