Multi-Scale Sparse Graph Convolutional Network For the Assessment of Parkinsonian Gait

判别式 计算机科学 人工智能 卷积神经网络 深度学习 图形 可视化 模式识别(心理学) 机器学习 理论计算机科学
作者
Rui Guo,Xiangxin Shao,Chencheng Zhang,Xiaohua Qian
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 1583-1594 被引量:38
标识
DOI:10.1109/tmm.2021.3068609
摘要

Automated assessment of patients with Parkinson's disease (PD) is urgently required in clinical practice to improve the diagnostic efficiency and objectivity and to remotely monitor the motor disorder symptoms and general health of these patients, especially in view of the travel restrictions due to the recent coronavirus epidemic. Gait motor disorder is one of the critical manifestations of PD, and automated assessment of gait is vital to realize automated assessment of PD patients. To this end, we propose a novel two-stream spatial-temporal attention graph convolutional network (2s-ST-AGCN) for video assessment of PD gait motor disorder. Specifically, the skeleton sequence of human body is extracted from videos to construct spatial-temporal graphs of joints and bones, and a two-stream spatial-temporal graph convolutional network is then built to simultaneously model the static spatial information and dynamic temporal variations. The multi-scale spatial-temporal attention-aware mechanism is also designed to effectively extract the discriminative spatial-temporal features. The deep supervision strategy is then embedded to minimize classification errors, thereby guiding the weight update process of the hidden layer to promote significant discriminative features. Besides, two model-driven terms are integrated into this deep learning framework to strengthen multi-scale similarity in the deep supervision and realize sparsification of discriminative features. Extensive experiments on the clinical video dataset show that the proposed model exhibits good performance with an accuracy of 65.66% and an acceptable accuracy of 98.90%, which is much better than that of the existing sensor- and vision-based methods for Parkinsonian gait assessment. Thus, the proposed method is potentially useful for assessing PD gait motor disorder in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Genmii完成签到,获得积分10
3秒前
3秒前
3秒前
卖火柴的小女孩完成签到,获得积分10
4秒前
5秒前
hitagi完成签到,获得积分20
6秒前
齐飞飞发布了新的文献求助10
6秒前
7秒前
Owen应助丰富的不惜采纳,获得10
7秒前
脑洞疼应助云之南采纳,获得10
7秒前
orixero应助搞怪的熠彤采纳,获得10
8秒前
psh完成签到 ,获得积分10
8秒前
jinke发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助hitagi采纳,获得10
10秒前
饕餮发布了新的文献求助50
12秒前
12秒前
zsj发布了新的文献求助10
14秒前
.X.完成签到 ,获得积分10
14秒前
思源应助齐飞飞采纳,获得10
15秒前
小吕完成签到,获得积分10
15秒前
大个应助闪耀星星采纳,获得10
16秒前
Hello应助感人的心采纳,获得10
16秒前
家嵩发布了新的文献求助10
17秒前
18秒前
18秒前
大意的酸奶举报wind求助涉嫌违规
18秒前
oaim完成签到,获得积分10
19秒前
香蕉觅云应助结实的问寒采纳,获得10
19秒前
19秒前
20秒前
传统的雨文完成签到,获得积分10
20秒前
odysseus1999发布了新的文献求助10
21秒前
搜集达人应助fwt采纳,获得10
22秒前
22秒前
HonglinGao发布了新的文献求助10
23秒前
23秒前
搞怪的熠彤完成签到,获得积分10
23秒前
咕噜应助念心采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143800
求助须知:如何正确求助?哪些是违规求助? 2795380
关于积分的说明 7814911
捐赠科研通 2451437
什么是DOI,文献DOI怎么找? 1304477
科研通“疑难数据库(出版商)”最低求助积分说明 627231
版权声明 601419