Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope

生物传感器 计算机科学 分析物 纳米技术 生化工程 范围(计算机科学) 材料科学 工程类 化学 物理化学 程序设计语言
作者
Anoop Singh,Asha Sharma,Aamir Ahmed,Ashok K. Sundramoorthy,Hidemitsu Furukawa,Sandeep Arya,Ajit Khosla
出处
期刊:Biosensors [MDPI AG]
卷期号:11 (9): 336-336 被引量:165
标识
DOI:10.3390/bios11090336
摘要

The electrochemical biosensors are a class of biosensors which convert biological information such as analyte concentration that is a biological recognition element (biochemical receptor) into current or voltage. Electrochemical biosensors depict propitious diagnostic technology which can detect biomarkers in body fluids such as sweat, blood, feces, or urine. Combinations of suitable immobilization techniques with effective transducers give rise to an efficient biosensor. They have been employed in the food industry, medical sciences, defense, studying plant biology, etc. While sensing complex structures and entities, a large data is obtained, and it becomes difficult to manually interpret all the data. Machine learning helps in interpreting large sensing data. In the case of biosensors, the presence of impurity affects the performance of the sensor and machine learning helps in removing signals obtained from the contaminants to obtain a high sensitivity. In this review, we discuss different types of biosensors along with their applications and the benefits of machine learning. This is followed by a discussion on the challenges, missing gaps in the knowledge, and solutions in the field of electrochemical biosensors. This review aims to serve as a valuable resource for scientists and engineers entering the interdisciplinary field of electrochemical biosensors. Furthermore, this review provides insight into the type of electrochemical biosensors, their applications, the importance of machine learning (ML) in biosensing, and challenges and future outlook.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
einuo发布了新的文献求助10
刚刚
1秒前
负责的玉米完成签到,获得积分20
2秒前
zz完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助sniper111采纳,获得10
3秒前
多喝水我发布了新的文献求助10
6秒前
7秒前
8秒前
醉熏的凝莲完成签到,获得积分10
9秒前
9秒前
小丑鱼儿完成签到 ,获得积分10
9秒前
朱诗源完成签到 ,获得积分10
10秒前
changfox完成签到,获得积分10
11秒前
11秒前
佳丽发布了新的文献求助10
12秒前
ding应助雷声有点响采纳,获得10
12秒前
撕裂心海肩膀完成签到,获得积分10
13秒前
mojito完成签到 ,获得积分10
14秒前
稀粥发布了新的文献求助10
15秒前
马美丽完成签到 ,获得积分10
16秒前
LinYX完成签到,获得积分10
16秒前
lunar发布了新的文献求助10
16秒前
文丽发布了新的文献求助10
20秒前
科研通AI2S应助sniper111采纳,获得30
21秒前
缓慢的谷秋完成签到,获得积分10
22秒前
yufanhui应助阜睿采纳,获得20
23秒前
daliu完成签到,获得积分10
23秒前
慕青应助PANSIXUAN采纳,获得10
25秒前
科大小刘完成签到 ,获得积分10
25秒前
26秒前
追寻的易巧完成签到 ,获得积分10
27秒前
29秒前
研友_VZG7GZ应助火花采纳,获得10
29秒前
思源应助sunny采纳,获得10
29秒前
七七完成签到 ,获得积分10
30秒前
科研通AI2S应助炸炸呦采纳,获得30
32秒前
34秒前
oceanao完成签到 ,获得积分0
37秒前
41秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165129
求助须知:如何正确求助?哪些是违规求助? 2816163
关于积分的说明 7911618
捐赠科研通 2475835
什么是DOI,文献DOI怎么找? 1318401
科研通“疑难数据库(出版商)”最低求助积分说明 632124
版权声明 602388