串联亲和纯化
蛋白质组学
生物素化
拟南芥
拟南芥
生物化学
蛋白质纯化
化学
蛋白激酶A
生物
蛋白质-蛋白质相互作用
亲和层析
串联质谱法
激酶
色谱法
质谱法
酶
基因
突变体
作者
Franz Leissing,Nicola V Misch,Xiaorong Wang,Linda Werner,Lan Huang,Uwe Conrath,Gerold J. M. Beckers
出处
期刊:Plant Physiology
[Oxford University Press]
日期:2021-09-21
卷期号:187 (4): 2381-2392
被引量:5
标识
DOI:10.1093/plphys/kiab446
摘要
The purification of low-abundance protein complexes and detection of in vivo protein-protein interactions in complex biological samples remains a challenging task. Here, we devised crosslinking and tandem affinity purification coupled to mass spectrometry (XL-TAP-MS), a quantitative proteomics approach for analyzing tandem affinity-purified, crosslinked protein complexes from plant tissues. We exemplarily applied XL-TAP-MS to study the MKK2-Mitogen-activated protein kinase (MPK4) signaling module in Arabidopsis thaliana. A tandem affinity tag consisting of an in vivo-biotinylated protein domain flanked by two hexahistidine sequences was adopted to allow for the affinity-based isolation of formaldehyde-crosslinked protein complexes under fully denaturing conditions. Combined with 15N stable isotopic labeling and tandem MS we captured and identified a total of 107 MKK2-MPK4 module-interacting proteins. Consistent with the role of the MPK signaling module in plant immunity, many of the module-interacting proteins are involved in the biotic and abiotic stress response of Arabidopsis. Validation of binary protein-protein interactions by in planta split-luciferase assays and in vitro kinase assays disclosed several direct phosphorylation targets of MPK4. Together, the XL-TAP-MS approach purifies low abundance protein complexes from biological samples and discovers previously unknown protein-protein interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI