计算机科学
杀虫剂
生化工程
环境科学
风险分析(工程)
纳米技术
工程类
业务
材料科学
生物
生态学
作者
Sanjana Naveen Prasad,Vipul Bansal,Rajesh Ramanathan
标识
DOI:10.1016/j.trac.2021.116429
摘要
Effective monitoring of pesticide residues in food and environmental samples is of high importance as these chemical residues undergo ongoing eco- and bio-accumulation, compromising the health of humans and animals alike. Several sensor platforms are being developed for the detection of pesticide residues in a range of sample matrices. A relatively new sensor platform that has gained enormous attention is based on the natural enzyme-mimicking catalytic activity of nanomaterials, more commonly referred to as nanozyme activity. In this review, we provide a critical overview of the recent advances in nanozyme-based sensing strategies for the detection of pesticides. The review highlights the salient features and the working principle of various nanozyme-based sensors, their integration with molecular recognition elements (MREs) to improve target specificity, and associated limitations that must be overcome to turn nanozyme sensors into mainstream analytical tools. The review further provides a critical outlook of nanozyme-based sensors for pesticide detection. The last section of the review outlines the steps that must be taken to realise the full potential of nanozyme-based sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI