Coal and gangue identification method based on the intensity image of lidar and DenseNet

计算机科学 激光雷达 人工智能 计算机视觉 卷积神经网络 聚类分析 鉴定(生物学) 频道(广播) 稳健性(进化) 遥感 煤矸石 模式识别(心理学) 地质学 化学 物理化学 基因 生物 植物 生物化学 计算机网络
作者
Jichuan Xing,Zimo Zhao,Yaozhi Wang,Liang Nie,Xian Du
出处
期刊:Applied Optics [The Optical Society]
卷期号:60 (22): 6566-6566 被引量:8
标识
DOI:10.1364/ao.422498
摘要

Coal and gangue (rock) identification is the essential process in a coal preparation plant. In an actual coal preparation plant, the existing classification methods have many disadvantages in safety and identification rate. We utilized the echo intensity image (EII) of lidar for coal and gangue identification for the first time, to the best of our knowledge, and achieved outstanding recognition results with a convolutional neural network. First, we acquire the information of the 3D point cloud, including the distance and the echo intensity, and decompose them into two channels. Then, we utilize the distance channel to remove the background noises and separate the object and the echo intensity channel to construct the 2D EII. Finally, we prune the dense convolutional network (DenseNet-121) to DenseNet-40 for the real-time identification and compare its F1 score with the other two traditional recognition algorithms. The experiment shows that the F1 score of the DenseNet-40 is up to 0.96, which indicates the DenseNet-40 is provably higher than other traditional algorithms in accuracy. Through trial and error, we find that the echo intensity of lidar can clearly show the texture information of coal and gangue. After combining with the DenseNet-40, it has more benefits than the existing classification methods in accuracy, efficiency, and robustness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可乐加冰完成签到,获得积分10
1秒前
zzz发布了新的文献求助10
1秒前
tomorrow完成签到 ,获得积分10
1秒前
田様应助酷炫静枫采纳,获得10
2秒前
自由忆枫应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
zoerist应助科研通管家采纳,获得10
2秒前
chris完成签到,获得积分20
2秒前
Return应助科研通管家采纳,获得10
2秒前
鹤轩应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
饱满凌波应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得30
2秒前
3秒前
杨建航发布了新的文献求助10
3秒前
小马甲应助琳666采纳,获得10
3秒前
spc68应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助30
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
吃瓜少女应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
希望天下0贩的0应助丝绒采纳,获得10
3秒前
zoerist应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
鹤轩应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
好久不见应助科研通管家采纳,获得10
4秒前
zoerist应助科研通管家采纳,获得10
4秒前
小佳同学应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718326
求助须知:如何正确求助?哪些是违规求助? 5252062
关于积分的说明 15285429
捐赠科研通 4868586
什么是DOI,文献DOI怎么找? 2614247
邀请新用户注册赠送积分活动 1564094
关于科研通互助平台的介绍 1521578