数学
反向
偏微分方程
背景(考古学)
应用数学
继续
人工神经网络
数学优化
牙石(牙科)
算法
一般化
反问题
班级(哲学)
数学分析
计算机科学
人工智能
几何学
生物
古生物学
牙科
程序设计语言
医学
作者
Siddhartha Mishra,Roberto Molinaro
出处
期刊:Ima Journal of Numerical Analysis
日期:2021-06-17
卷期号:42 (2): 981-1022
被引量:191
标识
DOI:10.1093/imanum/drab032
摘要
Physics-informed neural networks (PINNs) have recently been very successfully applied for efficiently approximating inverse problems for partial differential equations (PDEs). We focus on a particular class of inverse problems, the so-called data assimilation or unique continuation problems, and prove rigorous estimates on the generalization error of PINNs approximating them. An abstract framework is presented and conditional stability estimates for the underlying inverse problem are employed to derive the estimate on the PINN generalization error, providing rigorous justification for the use of PINNs in this context. The abstract framework is illustrated with examples of four prototypical linear PDEs. Numerical experiments, validating the proposed theory, are also presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI