MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status

甲基化 胶质瘤 DNA甲基化 医学 甲基转移酶 磁共振成像 分割 肿瘤科 核医学 癌症研究 人工智能 生物 基因 遗传学 放射科 基因表达 计算机科学
作者
Chandan Ganesh Bangalore Yogananda,Bhavya Shah,Sahil Nalawade,Gowtham Krishnan Murugesan,Fang F. Yu,Marco C. Pinho,Benjamin Wagner,Bruce Mickey,Toral Patel,Baowei Fei,Ananth J. Madhuranthakam,Joseph A. Maldjian
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:42 (5): 845-852 被引量:67
标识
DOI:10.3174/ajnr.a7029
摘要

BACKGROUND AND PURPOSE:

O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining MGMT promoter methylation status using T2 weighted Images (T2WI) only.

MATERIALS AND METHODS:

Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated MGMT promoter. A T2WI-only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.

RESULTS:

The MGMT-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].

CONCLUSIONS:

We demonstrate high classification accuracy in predicting MGMT promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开花开花发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
calm发布了新的文献求助10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
musejie应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
balabala发布了新的文献求助10
3秒前
3秒前
Chandler完成签到,获得积分10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
啦啦啦发布了新的文献求助10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
summer应助科研通管家采纳,获得10
3秒前
kingwill应助科研通管家采纳,获得20
4秒前
古往今来应助科研通管家采纳,获得20
4秒前
打打应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
lf-leo完成签到,获得积分10
4秒前
yar应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620