MRI-Based Deep-Learning Method for Determining Glioma MGMT Promoter Methylation Status

甲基化 胶质瘤 DNA甲基化 医学 甲基转移酶 磁共振成像 分割 肿瘤科 核医学 癌症研究 人工智能 生物 基因 遗传学 放射科 基因表达 计算机科学
作者
Chandan Ganesh Bangalore Yogananda,Bhavya Shah,Sahil Nalawade,Gowtham Krishnan Murugesan,Fang F. Yu,Marco C. Pinho,Benjamin Wagner,Bruce Mickey,Toral Patel,Baowei Fei,Ananth J. Madhuranthakam,Joseph A. Maldjian
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:42 (5): 845-852 被引量:67
标识
DOI:10.3174/ajnr.a7029
摘要

BACKGROUND AND PURPOSE:

O6-Methylguanine-DNA methyltransferase (MGMT) promoter methylation confers an improved prognosis and treatment response in gliomas. We developed a deep learning network for determining MGMT promoter methylation status using T2 weighted Images (T2WI) only.

MATERIALS AND METHODS:

Brain MR imaging and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive and The Cancer Genome Atlas. One hundred sixty-three subjects had a methylated MGMT promoter. A T2WI-only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single-label tumor segmentation. The network was trained using 3D-dense-UNets. Three-fold cross-validation was performed to generalize the performance of the networks. Dice scores were computed to determine tumor-segmentation accuracy.

RESULTS:

The MGMT-net demonstrated a mean cross-validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, [SD, 0.66%]) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% [SD, 0.04%] and 91.66% [SD, 2.06%], respectively, and a mean area under the curve of 0.93 [SD, 0.01]. The whole tumor-segmentation mean Dice score was 0.82 [SD, 0.008].

CONCLUSIONS:

We demonstrate high classification accuracy in predicting MGMT promoter methylation status using only T2WI. Our network surpasses the sensitivity, specificity, and accuracy of histologic and molecular methods. This result represents an important milestone toward using MR imaging to predict prognosis and treatment response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
LLY发布了新的文献求助10
1秒前
1秒前
典雅聪展完成签到,获得积分10
1秒前
linggaga完成签到,获得积分10
1秒前
典雅的俊驰应助琪哒采纳,获得10
2秒前
隐形曼青应助wlqc采纳,获得10
2秒前
快乐旭尧发布了新的文献求助10
2秒前
落寞鱼完成签到,获得积分10
2秒前
bbb发布了新的文献求助10
3秒前
糖异生给糖异生的求助进行了留言
3秒前
鸣笛应助听风遇见采纳,获得20
3秒前
3秒前
3秒前
123发布了新的文献求助10
4秒前
科研通AI5应助Dd采纳,获得10
4秒前
5秒前
动听的店员完成签到,获得积分20
5秒前
加油少年完成签到,获得积分10
5秒前
5秒前
科研通AI5应助不吃香菜采纳,获得10
5秒前
wuhuhu发布了新的文献求助10
5秒前
6秒前
小蘑菇应助舒适一手采纳,获得10
6秒前
vooov发布了新的文献求助10
6秒前
6秒前
haveatry发布了新的文献求助30
6秒前
丘比特应助无言已对采纳,获得10
7秒前
达达罗发布了新的文献求助10
7秒前
7秒前
小周周完成签到 ,获得积分10
8秒前
我蛋挞呢应助戽斗采纳,获得50
8秒前
万能图书馆应助jinyu采纳,获得10
9秒前
Geass发布了新的文献求助10
10秒前
10秒前
潇洒皮带完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
万信心发布了新的文献求助10
10秒前
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709