亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BMT-Net: Broad Multitask Transformer Network for Sentiment Analysis

计算机科学 情绪分析 特征学习 树库 变压器 人工智能 代表(政治) 自然语言处理 机器学习 多任务学习 特征(语言学) 语言模型 深度学习 任务(项目管理) 语言学 物理 法学 管理 电压 经济 哲学 政治学 政治 量子力学 依赖关系(UML)
作者
Tong Zhang,Xinrong Gong,C. L. Philip Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 6232-6243 被引量:103
标识
DOI:10.1109/tcyb.2021.3050508
摘要

Sentiment analysis uses a series of automated cognitive methods to determine the author's or speaker's attitudes toward an expressed object or text's overall emotional tendencies. In recent years, the growing scale of opinionated text from social networks has brought significant challenges to humans' sentimental tendency mining. The pretrained language model designed to learn contextual representation achieves better performance than traditional learning word vectors. However, the existing two basic approaches for applying pretrained language models to downstream tasks, feature-based and fine-tuning methods, are usually considered separately. What is more, different sentiment analysis tasks cannot be handled by the single task-specific contextual representation. In light of these pros and cons, we strive to propose a broad multitask transformer network (BMT-Net) to address these problems. BMT-Net takes advantage of both feature-based and fine-tuning methods. It was designed to explore the high-level information of robust and contextual representation. Primarily, our proposed structure can make the learned representations universal across tasks via multitask transformers. In addition, BMT-Net can roundly learn the robust contextual representation utilized by the broad learning system due to its powerful capacity to search for suitable features in deep and broad ways. The experiments were conducted on two popular datasets of binary Stanford Sentiment Treebank (SST-2) and SemEval Sentiment Analysis in Twitter (Twitter). Compared with other state-of-the-art methods, the improved representation with both deep and broad ways is shown to achieve a better F1 -score of 0.778 in Twitter and accuracy of 94.0% in the SST-2 dataset, respectively. These experimental results demonstrate the abilities of recognition in sentiment analysis and highlight the significance of previously overlooked design decisions about searching contextual features in deep and broad spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科目三应助Star采纳,获得10
28秒前
40秒前
李剑鸿完成签到,获得积分10
41秒前
Star发布了新的文献求助10
45秒前
46秒前
1分钟前
GeoEye发布了新的文献求助30
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
赘婿应助gwp1223采纳,获得40
2分钟前
orixero应助清风拂山岗采纳,获得10
2分钟前
无情的友容完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
斯文败类应助清风拂山岗采纳,获得10
3分钟前
3分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
外向易形完成签到,获得积分10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671283
求助须知:如何正确求助?哪些是违规求助? 3228138
关于积分的说明 9778550
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1609975
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991