Weighted Gene Coexpression Network Analysis Reveals Essential Genes and Pathways in Bipolar Disorder

小桶 基因 候选基因 生物 计算生物学 双相情感障碍 生物途径 遗传学 基因调控网络 表型 生物信息学 基因表达 基因本体论 神经科学 认知
作者
Zhenqing Zhang,Weiwei Wu,Jindong Chen,Guangyin Zhang,Jing-Yu Lin,Yankun Wu,Yu Zhang,Yun‐Ai Su,Jitao Li,Tianmei Si
出处
期刊:Frontiers in Psychiatry [Frontiers Media SA]
卷期号:12 被引量:16
标识
DOI:10.3389/fpsyt.2021.553305
摘要

Bipolar disorder (BD) is a major and highly heritable mental illness with severe psychosocial impairment, but its etiology and pathogenesis remains unclear. This study aimed to identify the essential pathways and genes involved in BD using weighted gene coexpression network analysis (WGCNA), a bioinformatic method studying the relationships between genes and phenotypes. Using two available BD gene expression datasets (GSE5388, GSE5389), we constructed a gene coexpression network and identified modules related to BD. The analyses of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways were performed to explore functional enrichment of the candidate modules. A protein-protein interaction (PPI) network was further constructed to identify the potential hub genes. Ten coexpression modules were identified from the top 5,000 genes in 77 samples and three modules were significantly associated with BD, which were involved in several biological processes (e.g., the actin filament-based process) and pathways (e.g., MAPK signaling). Four genes ( NOTCH1, POMC, NGF , and DRD2 ) were identified as candidate hub genes by PPI analysis and CytoHubba. Finally, we carried out validation analyses in a separate dataset, GSE12649, and verified NOTCH1 as a hub gene and the involvement of several biological processes such as actin filament-based process and axon development. Taken together, our findings revealed several candidate pathways and genes ( NOTCH1 ) in the pathogenesis of BD and call for further investigation for their potential research values in BD diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DAYTOY完成签到,获得积分10
刚刚
1秒前
1秒前
Flllllll完成签到,获得积分10
1秒前
喜悦成威完成签到,获得积分10
1秒前
酷波er应助南佳采纳,获得10
2秒前
2秒前
2秒前
Ava应助yan儿采纳,获得10
2秒前
丘比特应助纯真的莫茗采纳,获得10
2秒前
无花果应助勤恳的素阴采纳,获得10
2秒前
调皮的妙竹完成签到,获得积分10
3秒前
沫沫完成签到,获得积分10
3秒前
wzp发布了新的文献求助10
3秒前
3秒前
程程完成签到,获得积分20
3秒前
打打应助Ll采纳,获得10
3秒前
乐观发卡完成签到,获得积分20
4秒前
安详的帽子完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
vivi猫小咪发布了新的文献求助10
5秒前
Sue完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
Lucas应助南方姑娘采纳,获得10
6秒前
7秒前
zhing完成签到,获得积分10
7秒前
XHH完成签到 ,获得积分0
7秒前
小蘑菇应助sv采纳,获得10
8秒前
欢呼橘子完成签到 ,获得积分10
8秒前
季夏完成签到,获得积分10
8秒前
喜悦成威发布了新的文献求助20
8秒前
大菠萝发布了新的文献求助10
9秒前
9秒前
德德发布了新的文献求助10
9秒前
天天快乐应助Silence采纳,获得10
10秒前
深爱不疑发布了新的文献求助200
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762