已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel hybrid deep learning approach including combination of 1D power signals and 2D signal images for power quality disturbance classification

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 深度学习 人工神经网络 分类器(UML) 支持向量机
作者
Hatem Sindi,Majid Nour,Muhyaddin Rawa,Şaban Öztürk,Kemal Polat
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:174: 114785-114785 被引量:49
标识
DOI:10.1016/j.eswa.2021.114785
摘要

As a result of the widespread use of power electronic equipment and the increase in consumption, the importance of effective energy policies and the smart grid begins to increase. Nonlinear loads and other loads in electric power systems are considered as the main reason for power quality disturbance. Distortions in signal quality and shape due to power quality disturbance cause a decrease in total efficiency. The proposed hybrid convolutional neural network method consists of a 1D convolutional neural network structure and a 2D convolutional neural network structure. The features acquired by these two convolutional neural network architectures are classified using the fully connected layer, which is traditionally used as the classifier of convolutional neural network architectures. Power signals are processed using a 1D convolutional neural network in their original form. Then these signals are converted into images and processed using a 2D convolutional neural network. Then, feature vectors generated by 1D and 2D convolutional neural networks are combined. Finally, this combined vector is classified by a fully connected layer. The proposed method is well suited to the nature of signal processing. It is a novel approach that covers the steps of an expert examining a signal. The proposed framework is compared with other state-of-the-art power quality disturbance classification methods in the literature. While the proposed method's classification performance is relatively high compared to other methods, the computational complexity is almost the same.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香草幽魂发布了新的文献求助10
3秒前
5秒前
6秒前
harmony完成签到 ,获得积分10
7秒前
7秒前
浅尝离白举报机智飞烟求助涉嫌违规
7秒前
爆米花应助小宝采纳,获得30
8秒前
8秒前
tutu完成签到,获得积分10
8秒前
稳重的烙完成签到 ,获得积分10
10秒前
Sarah发布了新的文献求助10
11秒前
FartKing完成签到,获得积分10
12秒前
尤寄风发布了新的文献求助10
12秒前
晨晨发布了新的文献求助10
14秒前
FartKing发布了新的文献求助10
17秒前
梵莫发布了新的文献求助10
20秒前
25秒前
26秒前
天天快乐应助晨晨采纳,获得10
28秒前
xiaowang完成签到 ,获得积分10
30秒前
神勇的长颈鹿完成签到 ,获得积分10
30秒前
iwaking完成签到,获得积分10
30秒前
31秒前
dm发布了新的文献求助10
36秒前
38秒前
jgh发布了新的文献求助10
40秒前
43秒前
穆紫应助科研通管家采纳,获得10
43秒前
共享精神应助科研通管家采纳,获得30
43秒前
44秒前
共享精神应助稳重的烙采纳,获得10
48秒前
兔兔要睡觉完成签到 ,获得积分10
49秒前
49秒前
华仔应助黄百度采纳,获得10
49秒前
Sarah完成签到,获得积分10
51秒前
52秒前
L_MD完成签到,获得积分10
52秒前
yat完成签到 ,获得积分10
53秒前
Singularity应助ycccc采纳,获得20
55秒前
兔兔不睡觉完成签到 ,获得积分10
56秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171381
求助须知:如何正确求助?哪些是违规求助? 2822343
关于积分的说明 7938824
捐赠科研通 2482830
什么是DOI,文献DOI怎么找? 1322807
科研通“疑难数据库(出版商)”最低求助积分说明 633742
版权声明 602627