ProTICS reveals prognostic impact of tumor infiltrating immune cells in different molecular subtypes

免疫系统 生物 肿瘤微环境 比例危险模型 计算生物学 电池类型 免疫疗法 细胞 癌症研究 医学 免疫学 内科学 遗传学
作者
Shuhui Liu,Yupei Zhang,Xuequn Shang,Zhaolei Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:11
标识
DOI:10.1093/bib/bbab164
摘要

Different subtypes of the same cancer often show distinct genomic signatures and require targeted treatments. The differences at the cellular and molecular levels of tumor microenvironment in different cancer subtypes have significant effects on tumor pathogenesis and prognostic outcomes. Although there have been significant researches on the prognostic association of tumor infiltrating lymphocytes in selected histological subtypes, few investigations have systemically reported the prognostic impacts of immune cells in molecular subtypes, as quantified by machine learning approaches on multi-omics datasets. This paper describes a new computational framework, ProTICS, to quantify the differences in the proportion of immune cells in tumor microenvironment and estimate their prognostic effects in different subtypes. First, we stratified patients into molecular subtypes based on gene expression and methylation profiles by applying nonnegative tensor factorization technique. Then we quantified the proportion of cell types in each specimen using an mRNA-based deconvolution method. For tumors in each subtype, we estimated the prognostic effects of immune cell types by applying Cox proportional hazard regression. At the molecular level, we also predicted the prognosis of signature genes for each subtype. Finally, we benchmarked the performance of ProTICS on three TCGA datasets and another independent METABRIC dataset. ProTICS successfully stratified tumors into different molecular subtypes manifested by distinct overall survival. Furthermore, the different immune cell types showed distinct prognostic patterns with respect to molecular subtypes. This study provides new insights into the prognostic association between immune cells and molecular subtypes, showing the utility of immune cells as potential prognostic markers. Availability: R code is available at https://github.com/liu-shuhui/ProTICS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
铁头哇完成签到,获得积分10
2秒前
111完成签到 ,获得积分10
2秒前
Ayna发布了新的文献求助10
2秒前
3秒前
张瑜发布了新的文献求助10
3秒前
复杂访冬完成签到,获得积分10
4秒前
Orange应助壹贰叁肆采纳,获得10
4秒前
令狐完成签到,获得积分10
5秒前
薛教授完成签到,获得积分10
5秒前
6秒前
无限的半青完成签到 ,获得积分10
6秒前
丘比特应助小羊烧鸡采纳,获得10
7秒前
无名应助科研通管家采纳,获得10
7秒前
宋呵呵应助科研通管家采纳,获得10
7秒前
Return应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
HOAN应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得30
9秒前
婵婵完成签到,获得积分10
9秒前
9秒前
9秒前
老福贵儿应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得30
9秒前
自由白凡完成签到,获得积分10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
10秒前
打打应助科研通管家采纳,获得10
10秒前
田様应助ninomae采纳,获得10
10秒前
10秒前
雍雍完成签到 ,获得积分10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978