ProTICS reveals prognostic impact of tumor infiltrating immune cells in different molecular subtypes

免疫系统 生物 肿瘤微环境 比例危险模型 计算生物学 电池类型 免疫疗法 细胞 癌症研究 医学 免疫学 内科学 遗传学
作者
Shuhui Liu,Yupei Zhang,Xuequn Shang,Zhaolei Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (6) 被引量:11
标识
DOI:10.1093/bib/bbab164
摘要

Different subtypes of the same cancer often show distinct genomic signatures and require targeted treatments. The differences at the cellular and molecular levels of tumor microenvironment in different cancer subtypes have significant effects on tumor pathogenesis and prognostic outcomes. Although there have been significant researches on the prognostic association of tumor infiltrating lymphocytes in selected histological subtypes, few investigations have systemically reported the prognostic impacts of immune cells in molecular subtypes, as quantified by machine learning approaches on multi-omics datasets. This paper describes a new computational framework, ProTICS, to quantify the differences in the proportion of immune cells in tumor microenvironment and estimate their prognostic effects in different subtypes. First, we stratified patients into molecular subtypes based on gene expression and methylation profiles by applying nonnegative tensor factorization technique. Then we quantified the proportion of cell types in each specimen using an mRNA-based deconvolution method. For tumors in each subtype, we estimated the prognostic effects of immune cell types by applying Cox proportional hazard regression. At the molecular level, we also predicted the prognosis of signature genes for each subtype. Finally, we benchmarked the performance of ProTICS on three TCGA datasets and another independent METABRIC dataset. ProTICS successfully stratified tumors into different molecular subtypes manifested by distinct overall survival. Furthermore, the different immune cell types showed distinct prognostic patterns with respect to molecular subtypes. This study provides new insights into the prognostic association between immune cells and molecular subtypes, showing the utility of immune cells as potential prognostic markers. Availability: R code is available at https://github.com/liu-shuhui/ProTICS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Coisini完成签到,获得积分20
刚刚
SciGPT应助一定能成功!采纳,获得10
1秒前
黄迪迪发布了新的文献求助10
1秒前
爆米花应助洁琼93采纳,获得10
1秒前
李呆完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
一颗馒头完成签到,获得积分10
3秒前
金金发布了新的文献求助20
3秒前
skywalker完成签到,获得积分10
3秒前
Mr.R完成签到,获得积分10
4秒前
Jennifer完成签到,获得积分10
6秒前
ladjfdd发布了新的文献求助10
6秒前
6秒前
oo完成签到,获得积分10
6秒前
6秒前
李健的小迷弟应助ATOM采纳,获得10
6秒前
星辰大海应助B7来咯采纳,获得10
7秒前
giving完成签到 ,获得积分10
7秒前
8秒前
Mr.R发布了新的文献求助10
8秒前
泶1发布了新的文献求助10
8秒前
will完成签到,获得积分20
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
无餍应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
夏尔蓝完成签到,获得积分20
8秒前
orixero应助科研通管家采纳,获得20
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487195
求助须知:如何正确求助?哪些是违规求助? 3075107
关于积分的说明 9139979
捐赠科研通 2767369
什么是DOI,文献DOI怎么找? 1518653
邀请新用户注册赠送积分活动 703197
科研通“疑难数据库(出版商)”最低求助积分说明 701677