Sparsest Random Scheduling for Compressive Data Gathering in Wireless Sensor Networks

压缩传感 计算机科学 无线传感器网络 基本追求 算法 调度(生产过程) 网络数据包 实时计算 数学优化 数学 计算机网络 匹配追踪
作者
Xuangou Wu,Yan Xiong,Panlong Yang,Shouhong Wan,Wenchao Huang
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:13 (10): 5867-5877 被引量:56
标识
DOI:10.1109/twc.2014.2332344
摘要

Compressive sensing (CS)-based in-network data processing is a promising approach to reduce packet transmission in wireless sensor networks. Existing CS-based data gathering methods require a large number of sensors involved in each CS measurement gathering, leading to the relatively high data transmission cost. In this paper, we propose a sparsest random scheduling for compressive data gathering scheme, which decreases each measurement transmission cost from O(N) to O(log(N)) without increasing the number of CS measurements as well. In our scheme, we present a sparsest measurement matrix, where each row has only one nonzero entry. To satisfy the restricted isometric property, we propose a design method for representation basis, which is properly generated according to the sparsest measurement matrix and sensory data. With extensive experiments over real sensory data of CitySee, we demonstrate that our scheme can recover the real sensory data accurately. Surprisingly, our scheme outperforms the dense measurement matrix with a discrete cosine transformation basis over 5 dB on data recovery quality. Simulation results also show that our scheme reduces almost 10 × energy consumption compared with the dense measurement matrix for CS-based data gathering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清醒的ZY完成签到,获得积分10
1秒前
yxf发布了新的文献求助10
2秒前
大个应助叫滚滚采纳,获得10
2秒前
2秒前
Rui发布了新的文献求助10
3秒前
3秒前
China发布了新的文献求助10
3秒前
3秒前
ryze完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
莉莉发布了新的文献求助10
5秒前
6秒前
6秒前
辣辣完成签到,获得积分10
6秒前
桐桐应助白华苍松采纳,获得10
6秒前
华仔应助啊嚯采纳,获得10
6秒前
yasan完成签到,获得积分10
6秒前
7秒前
Fsy完成签到,获得积分10
7秒前
万能图书馆应助China采纳,获得10
7秒前
杨欢完成签到,获得积分10
7秒前
Stanley发布了新的文献求助10
7秒前
哭泣爆米花完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
钰宁发布了新的文献求助10
8秒前
灵巧荆发布了新的文献求助10
8秒前
慕青应助juan采纳,获得10
9秒前
9秒前
白小白发布了新的文献求助10
9秒前
丘比特应助阳光莲小蓬采纳,获得10
9秒前
司徒迎曼发布了新的文献求助10
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762