清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Optimization of Duvernay Fracturing Treatment Design Using Fully Compositional Dual Permeability Numeric Reservoir Simulation

微震 地质学 水力压裂 井口 磁导率 储层模拟 石油工程 流体力学 网格 断裂(地质) 岩土工程 机械 地震学 生物 遗传学 物理 大地测量学
作者
Robert S. Taylor,Barry Stobo,Greg Niebergall,Roberto Aguilera,Jeremy Walter,Eric Hards
标识
DOI:10.2118/171602-ms
摘要

Abstract This paper discusses how a fully-compositional, dual permeability numeric reservoir simulation was used to model flow from a Duvernay well pair after fracture stimulation. A geologic model based on well log data, referenced to coordinates on the Universal Transverse Mercator (UTM) coordinate system, utilizing North American Datum 83 (NAD83), Zone 11 UTM, was constructed. A sub-grid of this, containing permeability and porosity data, was imported as the grid for the dynamic reservoir simulator. The subject wellbore location was loaded into the model using UTM coordinates for the wellhead location and the wellbore trajectory survey. Microseismic event locations were also imported, relative to the treatment wellbore, measured during the time the fracturing treatments were conducted. Microseismic data was used to determine which grid blocks to include in a stimulated reservoir volume (SRV) for each fracturing treatment within the reservoir simulation. Within each SRV a dual permeability model was used to capture the flow in both the "primary" hydraulic fracture conduit as well as a "secondary" set of fractures (natural fractures which were also stimulated during the hydraulic fracturing process). Permeability and width for both fracture systems were independently defined. Based on in-situ stresses, it was assumed that the hydraulic fractures grew perpendicular to the wellbores with the SRVs branching into other directions because of the opening of natural fractures through the reservoir. The objective for creating two fracture systems was to simulate complex hydraulic fracturing geometry in communication with a primary fracture system, which then connects to the wellbore. It was assumed that the native unstimulated natural fractures had a negligible to no effect on flow from the native reservoir. The impact in differences to production between the primary and secondary fracture systems was evaluated by studying ranges of values for the primary and secondary fracture system's permeabilities and widths as well as secondary fracture system spacing. Using a fully compositional simulator, an equation of state (EOS) was developed and applied to properly simulate phase behavior under dynamic downhole conditions. This is essential to properly model multiphase flow effects on relative permeabilities and resulting production. Results were then compared between using this dual permeability model to those obtained with a model using only single permeability with transverse (bi-wing) hydraulic fractures (no stimulated reservoir volume) to determine which better simulated actual production for this particular well. An underlying assumption in most, if not all Duvernay well stimulations, is that creation of an enhanced secondary fracture system (often considered a network or SRV) is essential to economic production. The assumption that slickwater stages are required is largely derived from the success using slickwater to fracture stimulate dry gas wells. The use of a compositional reservoir simulator allows studying of the contribution of the secondary fracture system with liquids rich production. The matching of simulation results to actual production through changes in primary and secondary fracture system conductivity values allows investigation of the contribution each fracture system makes to both early and later time production. Through a better understanding of the contributions of both primary and secondary fracture systems in liquids rich production, operators can much better understand how to optimize a fracturing treatment design while helping minimize costs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房天川完成签到 ,获得积分10
14秒前
24秒前
shhoing应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
shhoing应助科研通管家采纳,获得10
29秒前
LINDENG2004完成签到 ,获得积分10
50秒前
大喜喜发布了新的文献求助50
1分钟前
King16完成签到,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
王梦秋完成签到 ,获得积分10
2分钟前
热情依白完成签到 ,获得积分10
3分钟前
yindi1991完成签到 ,获得积分10
3分钟前
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
齐阳春完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
4分钟前
宇文雨文完成签到 ,获得积分10
5分钟前
Lucas应助didididm采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
萝卜猪完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
没时间解释了完成签到 ,获得积分10
8分钟前
老迟到的友桃完成签到 ,获得积分10
8分钟前
cdercder完成签到,获得积分0
9分钟前
xiaowangwang完成签到 ,获得积分10
9分钟前
小二郎应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
zyjsunye完成签到 ,获得积分10
10分钟前
聪慧的怀绿完成签到,获得积分10
11分钟前
11分钟前
HHM发布了新的文献求助10
12分钟前
12分钟前
12分钟前
HHM发布了新的文献求助10
12分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
Arthur完成签到,获得积分10
13分钟前
一天完成签到 ,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561606
求助须知:如何正确求助?哪些是违规求助? 4646674
关于积分的说明 14678855
捐赠科研通 4588030
什么是DOI,文献DOI怎么找? 2517275
邀请新用户注册赠送积分活动 1490581
关于科研通互助平台的介绍 1461620