分子内力
氢键
结晶度
溶解度
化学
高分子化学
纤维素
结晶
聚酯纤维
聚合物
溶解
有机化学
结晶学
分子
标识
DOI:10.1002/(sici)1099-0488(199703)35:4<717::aid-polb18>3.0.co;2-j
摘要
This article tries to provide some direct evidence about the relationship between the intramolecular hydrogen bonds in cellulose and their corresponding effect on physical properties. The formation of intramolecular hydrogen bonds has been proved to contribute directly to certain physical properties of cellulose, such as its solubility in solvents having different polarities, the relative reactivities of the hydroxyls in a repeating unit and its crystallinity, using a 6-O-methylcellulose (6MC) film that was known1 to have intramolecular hydrogen bonds. The excellent solubility of 6MC when compared with other cellulose derivatives indicated a lack of interchain hydrogen bonds. A comparison of the relative reactivities between the C-2 and C-3 position hydroxyls in 6MC also indicates that intramolecular hydrogen bonds once formed in 6MC films are possibly maintained even after dissolution in solvents. In addition, the poor crystallinity exhibited by 6MC supports the idea that crystallization in cellulosics may be dependent more upon preferencial interchain hydrogen bonding at the C-6 position hydroxyls than upon a uniform structure such as that found in 6MC, where every structural unit is completely and regioselectively substituted, distinguishing it from other synthetic polymers such as polyolefins and polyesters. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 717–723, 1997
科研通智能强力驱动
Strongly Powered by AbleSci AI