Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues

材料科学 边值问题 边界(拓扑) 剪应力 材料性能 结构工程 机械 复合材料 数学 物理 数学分析 工程类
作者
Wei Sun,Michael S. Sacks,Michael J. Scott
出处
期刊:Journal of biomechanical engineering [ASME International]
卷期号:127 (4): 709-715 被引量:137
标识
DOI:10.1115/1.1933931
摘要

Evaluation and simulation of the multiaxial mechanical behavior of native and engineered soft tissues is becoming more prevalent. In spite of this growing use, testing methods have not been standardized and methodologies vary widely. The strong influence of boundary conditions were recently underscored by Waldman et al. [2002, J. Materials Science: Materials in Medicine 13, pp. 933–938] wherein substantially different experimental results were obtained using different sample gripping methods on the same specimens. As it is not possible to experimentally evaluate the effects of different biaxial test boundary conditions on specimen internal stress distributions, we conducted numerical simulations to explore these effects. A nonlinear Fung-elastic constitutive model (Sun et al., 2003, JBME 125, pp. 372–380, which fully incorporated the effects of in-plane shear, was used to simulate soft tissue mechanical behavior. Effects of boundary conditions, including varying the number of suture attachments, different gripping methods, specimen shapes, and material axes orientations were examined. Results demonstrated strong boundary effects with the clamped methods, while suture attachment methods demonstrated minimal boundary effects. Suture-based methods appeared to be best suited for biaxial mechanical tests of biological materials. Moreover, the simulations demonstrated that Saint-Venant’s effects depended significantly on the material axes orientation. While not exhaustive, these comprehensive simulations provide experimentalists with additional insight into the stress–strain fields associated with different biaxial testing boundary conditions, and may be used as a rational basis for the design of biaxial testing experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
头发乱了发布了新的文献求助10
2秒前
天天快乐应助DrYang采纳,获得10
2秒前
含糊发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
完美世界应助幸福胡萝卜采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
5秒前
科目三应助Arnold采纳,获得10
5秒前
润润轩轩发布了新的文献求助10
6秒前
宗笑晴发布了新的文献求助10
6秒前
lucky完成签到,获得积分10
6秒前
糖糖发布了新的文献求助10
7秒前
7秒前
跳跃尔容完成签到,获得积分10
8秒前
wyblobin完成签到,获得积分10
8秒前
8秒前
9秒前
沉默沛岚完成签到,获得积分10
9秒前
丰知然应助宇文宛菡采纳,获得10
9秒前
所所应助tu采纳,获得30
10秒前
mechefy完成签到,获得积分10
10秒前
鲤鱼萧完成签到,获得积分10
11秒前
宗笑晴完成签到,获得积分10
11秒前
12秒前
小蘑菇应助头发乱了采纳,获得10
12秒前
代萌萌发布了新的文献求助10
13秒前
jucy发布了新的文献求助50
13秒前
13秒前
Lz完成签到,获得积分10
13秒前
Hello应助葛辉辉采纳,获得10
13秒前
秦嘉旎完成签到,获得积分10
14秒前
华仔应助通~采纳,获得10
14秒前
万能图书馆应助半颗橙子采纳,获得10
14秒前
樱铃完成签到,获得积分10
15秒前
15秒前
上官若男应助俭朴的明轩采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762