Emerging roles for RNA polymerase II CTD in Arabidopsis

CTD公司 RNA聚合酶Ⅱ 生物 抄写(语言学) 染色质 细胞生物学 遗传学 染色质重塑 核糖核酸 计算生物学 基因 发起人 基因表达 海洋学 地质学 哲学 语言学
作者
Mohsen Hajheidari,Csaba Koncz,Dirk Eick
出处
期刊:Trends in Plant Science [Elsevier]
卷期号:18 (11): 633-643 被引量:78
标识
DOI:10.1016/j.tplants.2013.07.001
摘要

•We examine regulation of transcription and RNA processing through CTD modifications. •We highlight elements regulating post-translational modification of the CTD. •Plants lack key regulatory components involved in promoter-proximal pausing. •Plants lack key components of the Nrd1-dependent transcription termination pathway. •RNAPII CTD phosphorylation is required for miRNA biogenesis. Post-translational modifications of the carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAPII CTD) provide recognition marks to coordinate recruitment of numerous nuclear factors controlling transcription, cotranscriptional RNA processing, chromatin remodeling, and RNA export. Compared with the progress in yeast and mammals, deciphering the regulatory roles of position-specific combinatorial CTD modifications, the so-called CTD code, is still at an early stage in plants. In this review, we discuss some of the recent advances in understanding of the molecular mechanisms controlling the deposition and recognition of RNAPII CTD marks in plants during the transcriptional cycle and highlight some intriguing differences between regulatory components characterized in yeast, mammals, and plants. Post-translational modifications of the carboxy-terminal domain of the largest subunit of RNA polymerase II (RNAPII CTD) provide recognition marks to coordinate recruitment of numerous nuclear factors controlling transcription, cotranscriptional RNA processing, chromatin remodeling, and RNA export. Compared with the progress in yeast and mammals, deciphering the regulatory roles of position-specific combinatorial CTD modifications, the so-called CTD code, is still at an early stage in plants. In this review, we discuss some of the recent advances in understanding of the molecular mechanisms controlling the deposition and recognition of RNAPII CTD marks in plants during the transcriptional cycle and highlight some intriguing differences between regulatory components characterized in yeast, mammals, and plants. argonautes are main components of the silencing effector complexes that are involved in small RNA-directed silencing. after the C-terminal domain of a breast cancer susceptibility domain is an evolutionarily conserved phosphopeptide-binding domain. cyclin-dependent kinase (CDK)-activating kinase 1 is a CTD Ser7-kinase. an evolutionarily conserved nuclear protein complex formed from CBP20 and CBP80/ABH1. COMPASS and COMPASS-like complexes are conserved complexes that catalyze methylation of histone H3K4 at the early body of a transcribed gene. CPLs catalyze dephosphorylation of the RNAPII CTD in Arabidopsis. CDKs control RNA metabolism and checkpoint transitions of the cell cycle. a heterodimer of Spt4 and Spt5. prolyl isomerase catalyzes isomerization of the RNAPII CTD in yeast. a chromatin-specific histone chaperone formed from Spt16 and Pob3. a plant-specific protein containing two RNA-recognition motifs and one WW domain that is required for early transcription termination genome wide. a catalytic domain containing the DXDXT/V catalytic motif that is found in many CTD phosphatases. a spen family protein that controls early 3′ end formation. a plant homolog of yeast Pfs2p and mammalian WDR33, which are conserved RNA 3′ end processing factors. dimethylated lysine 4 of histone H3. trimethylated lysine 4 of histone H3. a small, non-coding RNA molecule that is processed from stem–loop precursors transcribed by RNAPII. an RNA molecule containing genetic information from the DNA of a gene, which is translated to protein by ribosomes. a bifunctional capping enzyme in mammals. a complex formed from four proteins (NELF-A, NELF-B, NELF-C or NELF-D, and NELFE). RNAPII-associated complex is a highly conserved protein complex that regulates histone modifications throughout the transcription cycle. catalyzes isomerization of the carboxy-terminal domain of the RNAPII CTD in mammals. an RNA-binding protein involved in transcription-coupled splicing. a heterodimer complex comprising a catalytic subunit, CDK9, and a coregulatory cyclin partner. an immature single strand of mRNA that contains both exons and introns. the initial transcript of a miRNA gene before processing to pre-miRNA. synthesizes mRNAs and many small RNAs using DNA as template. a zinc-finger protein that is essential for proper trimming and maturation of miRNAs. a histone deacetyltransferase complex that prevents the initiation of transcription of cryptic transcripts. dephosphorylates Ser5P marks of the carboxy-terminal domain of the RNAPII CTD. small, double-stranded RNA (dsRNA) molecules that control the level of target transcripts via target cleavage, DNA methylation, or translational inhibition. RNA–protein complexes that are components of the spliceosome. RNA molecules (approximately 70–500 nt) that form snRNPs with proteins and are involved in RNA processing and telomere maintenance. guides the processing of precursors of rRNA (pre-rRNAs) and post-transcriptional modifications of rRNA, tRNA, and snRNA. a multifunctional complex involved in chromatin modifications at gene promoter regions, chromatin remodeling, transcription pre-initiation complex assembly, and transcription elongation. a multifunctional CTD phosphatase. a subgroup of the AMP superfamily. a basal transcription factor that is a member of the transcription pre-initiation complex. a multisubunit basal transcription factor that has important roles in transcription and the DNA repair system. a protein–protein-interacting domain that binds to proline-rich motifs and phosphorylated serine/threonine–proline sites.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖飞飞完成签到,获得积分10
刚刚
刚刚
NexusExplorer应助赤壁采纳,获得10
刚刚
嘿嘿应助季博常采纳,获得10
刚刚
羊寄灵发布了新的文献求助10
1秒前
JamesPei应助邹醉蓝采纳,获得10
2秒前
CodeCraft应助MINGMING采纳,获得10
3秒前
Ly完成签到 ,获得积分10
3秒前
万能图书馆应助huangpeihao采纳,获得10
3秒前
秀丽的大门完成签到,获得积分10
3秒前
木尧发布了新的文献求助10
4秒前
海岸发布了新的文献求助10
4秒前
4秒前
甜甜夏青发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Lontano完成签到,获得积分10
5秒前
5秒前
一鸣大人完成签到,获得积分10
6秒前
懒得理完成签到 ,获得积分10
7秒前
可乐发布了新的文献求助10
7秒前
小陈发布了新的文献求助10
8秒前
8秒前
9秒前
Young发布了新的文献求助10
9秒前
9秒前
shanlu完成签到,获得积分10
9秒前
9秒前
曹广秀完成签到,获得积分10
10秒前
香蕉觅云应助syx采纳,获得10
10秒前
眠妃完成签到 ,获得积分10
10秒前
11秒前
盒子先生发布了新的文献求助10
11秒前
11秒前
莱因哈特别着急完成签到,获得积分10
11秒前
oo发布了新的文献求助10
11秒前
蒸馏水发布了新的文献求助10
11秒前
Akim应助一只晴天采纳,获得10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502