Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells

石墨烯 氧化物 催化作用 材料科学 电催化剂 电化学 拉曼光谱 化学工程 X射线光电子能谱 无机化学 热解 纳米技术 电极 化学 有机化学 冶金 物理化学 物理 工程类 光学
作者
Zhenjiang Lu,Shu‐Juan Bao,Yu-Ting Gou,Chang-Jun Cai,Chenchen Ji,Maowen Xu,Jie Song,Ruiying Wang
出处
期刊:RSC Advances [Royal Society of Chemistry]
卷期号:3 (12): 3990-3990 被引量:119
标识
DOI:10.1039/c3ra22161j
摘要

The electronic and chemical properties of reduced-graphene oxide (RGO) can be modulated by chemical doping of foreign atoms and functional moieties. In this work, a low-cost industrial material, 5-aminotetrazole monohydrate (AM) was chosen to modify RGO by a facile, catalyst-free thermal annealing approach in largescale. The obtained nitrogen-doped reduced-graphene oxide (N-RGO), as a metal-free catalyst for oxygen reduction, was characterized by XRD, XPS, Raman, SEM, TEM and electrochemical measurements. It was found that the optimum synthesis conditions were a mass ratio of graphene oxide (GO) and AM equal to 1 : 25 and an annealing temperature of 700 °C. Detailed X-ray photoelectron spectrum analysis of the optimum product shows that the atomic percentage of the N-RGO samples can be adjusted up to 10.6%. Electrochemical characterizations clearly demonstrate excellent electrocatalytic activity of N-RGO toward the oxygen reduction reaction (ORR) in alkaline electrolytes via a four-electron pathway. The total content of graphitic and pyridinic nitrogen atoms is the key factor to enhance the current density in the electrocatalytic activity for ORR. This simple, cost-effective and scalable approach opens up the possibility for the synthesis of other nitrogen doping materials in gram-scale. It can be applied to various carbon materials for the development of other metal-free efficient ORR catalysts for fuel cell applications and even new catalytic materials for applications beyond fuel cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miracle_wh发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
5秒前
圆月弯刀完成签到 ,获得积分10
6秒前
坦率白萱应助DJANGO采纳,获得30
8秒前
露亮完成签到,获得积分10
9秒前
Bressanone发布了新的文献求助10
9秒前
10秒前
斯文的慕儿完成签到 ,获得积分10
12秒前
露亮发布了新的文献求助10
12秒前
12秒前
智慧少女不头秃完成签到,获得积分10
14秒前
33完成签到,获得积分10
15秒前
所所应助感谢有你采纳,获得10
17秒前
17秒前
18秒前
19秒前
乐乐应助anna采纳,获得10
22秒前
潇湘雪月发布了新的文献求助10
22秒前
22秒前
刘燕发布了新的文献求助10
23秒前
23秒前
24秒前
量子星尘发布了新的文献求助10
27秒前
俏皮芷蕊发布了新的文献求助10
27秒前
28秒前
31秒前
31秒前
32秒前
Rondab应助张学友采纳,获得10
35秒前
35秒前
anna发布了新的文献求助10
36秒前
38秒前
如约而至完成签到 ,获得积分10
38秒前
38秒前
39秒前
40秒前
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105