基于生理学的药代动力学模型
性情
体内
悬链线
药代动力学
计算生物学
化学
药理学
计算机科学
生物
工程类
生物技术
心理学
结构工程
社会心理学
作者
Yang Chen,Joseph P. Balthasar
出处
期刊:Aaps Journal
[Springer Nature]
日期:2012-09-06
卷期号:14 (4): 850-859
被引量:94
标识
DOI:10.1208/s12248-012-9395-9
摘要
Efforts have been made to extend the biological half-life of monoclonal antibody drugs (mAbs) by increasing the affinity of mAb–neonatal Fc receptor (FcRn) binding; however, mixed results have been reported. One possible reason for a poor correlation between the equilibrium affinity of mAb–FcRn binding and mAb systemic pharmacokinetics is that the timecourse of endosomal transit is too brief to allow binding to reach equilibrium. In the present work, a new physiologically based pharmacokinetic (PBPK) model has been developed to approximate the pH and time-dependent endosomal trafficking of immunoglobulin G (IgG). In this model, a catenary sub-model was utilized to describe the endosomal transit of IgG and the time dependencies in IgG–FcRn association and dissociation. The model performs as well as a previously published PBPK model, with assumed equilibrium kinetics of mAb–FcRn binding, in capturing the disposition profile of murine mAb from wild-type and FcRn knockout mice (catenary vs. equilibrium model: r 2, 0.971 vs. 0.978; median prediction error, 3.38% vs. 3.79%). Compared to the PBPK model with equilibrium binding, the present catenary PBPK model predicts much more moderate changes in half-life with altered FcRn binding. For example, for a 10-fold increase in binding affinity, the catenary model predicts <2.5-fold change in half-life compared to an ∼8-fold increase as predicted by the equilibrium model; for a 100-fold increase in binding affinity, the catenary model predicts ∼7-fold change in half-life compared to >70-fold increase as predicted by the equilibrium model. Predictions of the new catenary PBPK model are more consistent with experimental results in the published literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI