Evaluation of a Catenary PBPK Model for Predicting the In Vivo Disposition of mAbs Engineered for High-Affinity Binding to FcRn

基于生理学的药代动力学模型 性情 体内 悬链线 药代动力学 计算生物学 化学 药理学 计算机科学 生物 工程类 生物技术 心理学 结构工程 社会心理学
作者
Yang Chen,Joseph P. Balthasar
出处
期刊:Aaps Journal [Springer Nature]
卷期号:14 (4): 850-859 被引量:94
标识
DOI:10.1208/s12248-012-9395-9
摘要

Efforts have been made to extend the biological half-life of monoclonal antibody drugs (mAbs) by increasing the affinity of mAb–neonatal Fc receptor (FcRn) binding; however, mixed results have been reported. One possible reason for a poor correlation between the equilibrium affinity of mAb–FcRn binding and mAb systemic pharmacokinetics is that the timecourse of endosomal transit is too brief to allow binding to reach equilibrium. In the present work, a new physiologically based pharmacokinetic (PBPK) model has been developed to approximate the pH and time-dependent endosomal trafficking of immunoglobulin G (IgG). In this model, a catenary sub-model was utilized to describe the endosomal transit of IgG and the time dependencies in IgG–FcRn association and dissociation. The model performs as well as a previously published PBPK model, with assumed equilibrium kinetics of mAb–FcRn binding, in capturing the disposition profile of murine mAb from wild-type and FcRn knockout mice (catenary vs. equilibrium model: r 2, 0.971 vs. 0.978; median prediction error, 3.38% vs. 3.79%). Compared to the PBPK model with equilibrium binding, the present catenary PBPK model predicts much more moderate changes in half-life with altered FcRn binding. For example, for a 10-fold increase in binding affinity, the catenary model predicts <2.5-fold change in half-life compared to an ∼8-fold increase as predicted by the equilibrium model; for a 100-fold increase in binding affinity, the catenary model predicts ∼7-fold change in half-life compared to >70-fold increase as predicted by the equilibrium model. Predictions of the new catenary PBPK model are more consistent with experimental results in the published literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wang关注了科研通微信公众号
刚刚
白金之星关注了科研通微信公众号
1秒前
马户完成签到,获得积分10
1秒前
彭于晏应助kkzc采纳,获得10
1秒前
1秒前
十三完成签到,获得积分10
1秒前
英姑应助hgy采纳,获得10
1秒前
orixero应助maodoudou采纳,获得10
2秒前
xiaochao完成签到,获得积分10
2秒前
3秒前
sisisij发布了新的文献求助10
3秒前
十四吉关注了科研通微信公众号
4秒前
楠茸完成签到 ,获得积分10
4秒前
taojian7发布了新的文献求助10
5秒前
上官若男应助xiao晓采纳,获得10
5秒前
Lucas应助xiao晓采纳,获得10
5秒前
李健的粉丝团团长应助sx采纳,获得10
6秒前
liushandong完成签到,获得积分10
6秒前
田国兵完成签到,获得积分10
7秒前
金启维发布了新的文献求助10
9秒前
9秒前
BYN发布了新的文献求助10
9秒前
Autumn完成签到,获得积分10
9秒前
科研dog完成签到,获得积分10
10秒前
治愈小羊发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
quhayley应助十九日采纳,获得10
12秒前
12秒前
FJXHXQ完成签到,获得积分10
13秒前
小蘑菇应助张张采纳,获得10
14秒前
15秒前
15秒前
16秒前
赘婿应助WYT采纳,获得10
16秒前
dildil发布了新的文献求助10
16秒前
Yziii应助无私的易蓉采纳,获得20
16秒前
大哼哼完成签到,获得积分10
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159344
求助须知:如何正确求助?哪些是违规求助? 2810413
关于积分的说明 7887812
捐赠科研通 2469306
什么是DOI,文献DOI怎么找? 1314746
科研通“疑难数据库(出版商)”最低求助积分说明 630710
版权声明 602012