A Systems Biology Study of Two Distinct Growth Phases of Saccharomyces cerevisiae Cultures

代谢组学 酿酒酵母 系统生物学 指数增长 计算生物学 酵母 代谢物 生物 生物化学 生物系统 生物信息学 物理 量子力学
作者
A.M. Martins,Diogo M. Camacho,Joel L. Shuman,Wei Sha,Pedro Mendes,Vladimir Shulaev
出处
期刊:Current Genomics [Bentham Science]
卷期号:5 (8): 649-663 被引量:41
标识
DOI:10.2174/1389202043348643
摘要

Saccharomyces cerevisiae cultures growing exponentially and after starvation are distinctly different, as shown by several studies at the physiological, biochemical, and morphological levels. One group of studies attempted to be mechanistic, characterizing a few molecules and interactions, while another focused on global observations but remained descriptive or at best phenomenological. Recent advances in large-scale molecular profiling technologies, theoretical, and computational biology, are making possible integrative studies of biological systems, where global observations are explained through computational models with solid theoretical bases. A case study of the systems biology approach applied to the characterization of bakers yeast cultures in exponential growth and post-diauxic phases is presented. Twenty cell cultures of S. cerevisiae were grown under similar environmental conditions. Samples from ten of these cultures were collected 11 hours after inoculation, while samples from the other ten were collected 4 days after inoculation. These samples were analyzed for their RNA and metabolite composition using Affymetrix chips and gas chromatography-mass spectrometry (GC-MS). The data were interpreted with statistical analyses and through the use of computer simulations of a kinetic model that was built by merging two independent models of glycolysis and glycerol biosynthesis. The simulation results agree with the exponential growth phase data, while no model is available for the post-diauxic phase. We discuss the need for expanding the number of kinetic models of S. cerevisiae, combining metabolism and genetic regulation, and covering all of its biochemistry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Zn应助KaK采纳,获得10
1秒前
SciGPT应助尐菟菟采纳,获得10
2秒前
zzz发布了新的文献求助10
2秒前
2秒前
2秒前
领奖发布了新的文献求助10
2秒前
坚定冬易完成签到,获得积分10
3秒前
3秒前
锦鲤完成签到,获得积分10
4秒前
pfuhh发布了新的文献求助10
4秒前
植保匠人发布了新的文献求助10
4秒前
ledo完成签到 ,获得积分10
4秒前
充电宝应助黄芪采纳,获得10
5秒前
5秒前
坚定冬易发布了新的文献求助10
5秒前
撒野完成签到,获得积分10
5秒前
阿也完成签到 ,获得积分10
5秒前
星辰大海应助丁老三采纳,获得10
6秒前
彭于晏应助Pom采纳,获得10
6秒前
7秒前
7秒前
7秒前
123完成签到,获得积分10
7秒前
JamesPei应助马里奥采纳,获得10
7秒前
7秒前
乐观的雨发布了新的文献求助10
7秒前
李健应助研猫采纳,获得10
9秒前
小手冰凉发布了新的文献求助10
9秒前
10秒前
贪玩中心发布了新的文献求助10
10秒前
yan儿发布了新的文献求助10
10秒前
莫言完成签到,获得积分10
11秒前
zq发布了新的文献求助10
11秒前
萨摩耶发布了新的文献求助10
12秒前
传奇3应助包容的剑采纳,获得10
12秒前
大个应助眼睛大的小熊猫采纳,获得10
12秒前
BY发布了新的文献求助10
12秒前
Fly发布了新的文献求助10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542444
求助须知:如何正确求助?哪些是违规求助? 3119706
关于积分的说明 9340451
捐赠科研通 2817558
什么是DOI,文献DOI怎么找? 1549184
邀请新用户注册赠送积分活动 722039
科研通“疑难数据库(出版商)”最低求助积分说明 712928