Automatic construction of a context-aware sentiment lexicon

词典 情绪分析 计算机科学 领域(数学分析) 自然语言处理 背景(考古学) 人工智能 词(群论) 笔记本电脑 光学(聚焦) 任务(项目管理) 语言学 哲学 古生物学 数学分析 经济 管理 物理 光学 操作系统 生物 数学
作者
Yue Lu,Malu Castellanos,Umeshwar Dayal,ChengXiang Zhai
标识
DOI:10.1145/1963405.1963456
摘要

The explosion of Web opinion data has made essential the need for automatic tools to analyze and understand people's sentiments toward different topics. In most sentiment analysis applications, the sentiment lexicon plays a central role. However, it is well known that there is no universally optimal sentiment lexicon since the polarity of words is sensitive to the topic domain. Even worse, in the same domain the same word may indicate different polarities with respect to different aspects. For example, in a laptop review, "large" is negative for the battery aspect while being positive for the screen aspect. In this paper, we focus on the problem of learning a sentiment lexicon that is not only domain specific but also dependent on the aspect in context given an unlabeled opinionated text collection. We propose a novel optimization framework that provides a unified and principled way to combine different sources of information for learning such a context-dependent sentiment lexicon. Experiments on two data sets (hotel reviews and customer feedback surveys on printers) show that our approach can not only identify new sentiment words specific to the given domain but also determine the different polarities of a word depending on the aspect in context. In further quantitative evaluation, our method is proved to be effective in constructing a high quality lexicon by comparing with a human annotated gold standard. In addition, using the learned context-dependent sentiment lexicon improved the accuracy in an aspect-level sentiment classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
深情安青应助朴素的松采纳,获得10
4秒前
善学以致用应助伯言采纳,获得10
4秒前
张玮发布了新的文献求助10
6秒前
ri_290完成签到,获得积分10
8秒前
shiori发布了新的文献求助10
8秒前
科研通AI6应助Echo采纳,获得10
8秒前
15秒前
打打应助朴素的松采纳,获得10
15秒前
伯言发布了新的文献求助10
18秒前
NexusExplorer应助Lialilico采纳,获得10
19秒前
风格完成签到,获得积分10
20秒前
kingwhitewing发布了新的文献求助10
21秒前
22秒前
Aron发布了新的文献求助10
22秒前
27秒前
27秒前
烟花应助yang采纳,获得10
28秒前
Owen应助inter采纳,获得10
28秒前
lynn发布了新的文献求助10
32秒前
FLyu发布了新的文献求助10
32秒前
33秒前
小蘑菇应助土豆土豆采纳,获得10
33秒前
niNe3YUE应助研友_Ljqal8采纳,获得10
34秒前
长情的海亦完成签到,获得积分10
36秒前
12发布了新的文献求助100
37秒前
38秒前
shiori完成签到,获得积分10
38秒前
隐形曼青应助Jodie采纳,获得10
40秒前
42秒前
郭6666发布了新的文献求助10
44秒前
FLyu完成签到,获得积分10
44秒前
耶椰发布了新的文献求助10
46秒前
12完成签到,获得积分10
46秒前
欣喜的元绿完成签到,获得积分10
51秒前
51秒前
53秒前
55秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550