已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems

高斯分布 概率密度函数 高斯过程 高斯滤波器 熵(时间箭头) 非线性系统 不确定性传播 数学 卡尔曼滤波器 高斯函数 应用数学 高斯随机场 动力系统理论 计算机科学 统计物理学 算法 人工智能 统计 物理 量子力学
作者
Kyle J. DeMars,Robert H. Bishop,Moriba Jah
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:36 (4): 1047-1057 被引量:133
标识
DOI:10.2514/1.58987
摘要

Uncertainty propagation of dynamical systems is a common need across many domains and disciplines. In nonlinear settings, the extended Kalman filter is the de facto standard propagation tool. Recently, a new class of propagation methods called sigma-point Kalman filters was introduced, which eliminated the need for explicit computation of tangent linear matrices. It has been shown in numerous cases that the actual uncertainty of a dynamical system cannot be accurately described by a Gaussian probability density function. This has motivated work in applying the Gaussian mixture model approach to better approximate the non-Gaussian probability density function. A limitation to existing approaches is that the number of Gaussian components of the Gaussian mixture model is fixed throughout the propagation of uncertainty. This limitation has made previous work ill-suited for nonstationary probability density functions either due to inaccurate representation of the probability density function or computational burden given a large number of Gaussian components that may not be needed. This work examines an improved method implementing a Gaussian mixture model that is adapted online via splitting of the Gaussian mixture model components triggered by an entropy-based detection of nonlinearity during the probability density function evolution. In doing so, the Gaussian mixture model approximation adaptively includes additional components as nonlinearity is encountered and can therefore be used to more accurately approximate the probability density function. This paper introduces this strategy, called adaptive entropy-based Gaussian-mixture information synthesis. The adaptive entropy-based Gaussian-mixture information synthesis method is demonstrated for its ability to accurately perform inference on two cases of uncertain orbital dynamical systems. The impact of this work for orbital dynamical systems is that the improved representation of the uncertainty of the space object can then be used more consistently for identification and tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芝士奶盖有点咸完成签到 ,获得积分10
刚刚
555646446发布了新的文献求助10
刚刚
爱喝红茶完成签到,获得积分10
6秒前
how完成签到 ,获得积分10
7秒前
yanhan2009完成签到 ,获得积分10
11秒前
12秒前
科研小菜完成签到 ,获得积分10
18秒前
安河桥完成签到,获得积分10
20秒前
SS完成签到,获得积分0
22秒前
2220完成签到 ,获得积分10
24秒前
身法马可波罗完成签到 ,获得积分10
24秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
JamesPei应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
小马甲应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
安河桥发布了新的文献求助10
29秒前
科研通AI2S应助晓雨采纳,获得10
37秒前
言不得语发布了新的文献求助10
41秒前
千倾完成签到 ,获得积分10
42秒前
方格子完成签到 ,获得积分10
44秒前
46秒前
草上飞完成签到 ,获得积分10
48秒前
小聖完成签到 ,获得积分10
49秒前
小宝完成签到 ,获得积分10
51秒前
科研Mayormm完成签到 ,获得积分10
55秒前
59秒前
思源应助ysssp采纳,获得10
1分钟前
领导范儿应助我cr采纳,获得10
1分钟前
Hana完成签到 ,获得积分10
1分钟前
胡萝卜发布了新的文献求助10
1分钟前
1分钟前
Bizibili完成签到,获得积分10
1分钟前
xdedd完成签到,获得积分10
1分钟前
勤奋的立果完成签到 ,获得积分10
1分钟前
江南之南完成签到 ,获得积分10
1分钟前
Lorin完成签到 ,获得积分10
1分钟前
一丢丢完成签到 ,获得积分10
1分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268532
求助须知:如何正确求助?哪些是违规求助? 2908048
关于积分的说明 8344245
捐赠科研通 2578401
什么是DOI,文献DOI怎么找? 1401979
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634372