Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems

高斯分布 概率密度函数 高斯过程 高斯滤波器 熵(时间箭头) 非线性系统 不确定性传播 数学 卡尔曼滤波器 高斯函数 应用数学 高斯随机场 动力系统理论 计算机科学 统计物理学 算法 人工智能 统计 物理 量子力学
作者
Kyle J. DeMars,Robert H. Bishop,Moriba Jah
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:36 (4): 1047-1057 被引量:133
标识
DOI:10.2514/1.58987
摘要

Uncertainty propagation of dynamical systems is a common need across many domains and disciplines. In nonlinear settings, the extended Kalman filter is the de facto standard propagation tool. Recently, a new class of propagation methods called sigma-point Kalman filters was introduced, which eliminated the need for explicit computation of tangent linear matrices. It has been shown in numerous cases that the actual uncertainty of a dynamical system cannot be accurately described by a Gaussian probability density function. This has motivated work in applying the Gaussian mixture model approach to better approximate the non-Gaussian probability density function. A limitation to existing approaches is that the number of Gaussian components of the Gaussian mixture model is fixed throughout the propagation of uncertainty. This limitation has made previous work ill-suited for nonstationary probability density functions either due to inaccurate representation of the probability density function or computational burden given a large number of Gaussian components that may not be needed. This work examines an improved method implementing a Gaussian mixture model that is adapted online via splitting of the Gaussian mixture model components triggered by an entropy-based detection of nonlinearity during the probability density function evolution. In doing so, the Gaussian mixture model approximation adaptively includes additional components as nonlinearity is encountered and can therefore be used to more accurately approximate the probability density function. This paper introduces this strategy, called adaptive entropy-based Gaussian-mixture information synthesis. The adaptive entropy-based Gaussian-mixture information synthesis method is demonstrated for its ability to accurately perform inference on two cases of uncertain orbital dynamical systems. The impact of this work for orbital dynamical systems is that the improved representation of the uncertainty of the space object can then be used more consistently for identification and tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西红柿完成签到,获得积分10
1秒前
Tang完成签到 ,获得积分10
1秒前
沉积岩完成签到,获得积分10
1秒前
虚幻的香彤完成签到,获得积分10
1秒前
乐乐应助宝宝哎呀哦采纳,获得10
1秒前
1秒前
2秒前
白日焰火完成签到 ,获得积分10
2秒前
机灵一兰完成签到,获得积分10
2秒前
bella完成签到,获得积分10
2秒前
神经娃发布了新的文献求助10
3秒前
阿柒发布了新的文献求助10
3秒前
YANGMJ发布了新的文献求助10
3秒前
慈祥的煎蛋完成签到,获得积分10
4秒前
www完成签到 ,获得积分10
4秒前
4秒前
戴好头盔搞科研完成签到,获得积分10
4秒前
4秒前
幽凡发布了新的文献求助30
5秒前
开放芮发布了新的文献求助10
5秒前
祁风发布了新的文献求助10
6秒前
你怎么讨厌完成签到,获得积分10
7秒前
xr完成签到 ,获得积分10
7秒前
However完成签到,获得积分10
7秒前
Orange应助科研通管家采纳,获得10
8秒前
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
64658应助科研通管家采纳,获得10
8秒前
young应助科研通管家采纳,获得10
8秒前
佳佳应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
cheng4046应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
9秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016195
求助须知:如何正确求助?哪些是违规求助? 3556252
关于积分的说明 11320524
捐赠科研通 3289166
什么是DOI,文献DOI怎么找? 1812411
邀请新用户注册赠送积分活动 887936
科研通“疑难数据库(出版商)”最低求助积分说明 812058