Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems

高斯分布 概率密度函数 高斯过程 高斯滤波器 熵(时间箭头) 非线性系统 不确定性传播 数学 卡尔曼滤波器 高斯函数 应用数学 高斯随机场 动力系统理论 计算机科学 统计物理学 算法 人工智能 统计 物理 量子力学
作者
Kyle J. DeMars,Robert H. Bishop,Moriba Jah
出处
期刊:Journal of Guidance Control and Dynamics [American Institute of Aeronautics and Astronautics]
卷期号:36 (4): 1047-1057 被引量:133
标识
DOI:10.2514/1.58987
摘要

Uncertainty propagation of dynamical systems is a common need across many domains and disciplines. In nonlinear settings, the extended Kalman filter is the de facto standard propagation tool. Recently, a new class of propagation methods called sigma-point Kalman filters was introduced, which eliminated the need for explicit computation of tangent linear matrices. It has been shown in numerous cases that the actual uncertainty of a dynamical system cannot be accurately described by a Gaussian probability density function. This has motivated work in applying the Gaussian mixture model approach to better approximate the non-Gaussian probability density function. A limitation to existing approaches is that the number of Gaussian components of the Gaussian mixture model is fixed throughout the propagation of uncertainty. This limitation has made previous work ill-suited for nonstationary probability density functions either due to inaccurate representation of the probability density function or computational burden given a large number of Gaussian components that may not be needed. This work examines an improved method implementing a Gaussian mixture model that is adapted online via splitting of the Gaussian mixture model components triggered by an entropy-based detection of nonlinearity during the probability density function evolution. In doing so, the Gaussian mixture model approximation adaptively includes additional components as nonlinearity is encountered and can therefore be used to more accurately approximate the probability density function. This paper introduces this strategy, called adaptive entropy-based Gaussian-mixture information synthesis. The adaptive entropy-based Gaussian-mixture information synthesis method is demonstrated for its ability to accurately perform inference on two cases of uncertain orbital dynamical systems. The impact of this work for orbital dynamical systems is that the improved representation of the uncertainty of the space object can then be used more consistently for identification and tracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mi发布了新的文献求助10
1秒前
小夭完成签到,获得积分10
1秒前
畅快自行车完成签到 ,获得积分10
1秒前
爱听歌的糖豆完成签到,获得积分10
1秒前
dzdzn完成签到 ,获得积分20
1秒前
1秒前
Spinnin完成签到,获得积分10
2秒前
幸运草完成签到 ,获得积分10
2秒前
小children丙完成签到,获得积分10
2秒前
zhenzhen发布了新的文献求助10
2秒前
nicolight发布了新的文献求助10
2秒前
习习应助易安采纳,获得10
2秒前
云青完成签到,获得积分10
2秒前
科目三应助二二二采纳,获得10
2秒前
felix发布了新的文献求助10
2秒前
Lucas应助圆滑的铁勺采纳,获得10
3秒前
3秒前
3秒前
锦诗完成签到,获得积分10
3秒前
3秒前
板凳发布了新的文献求助10
3秒前
xzy完成签到,获得积分10
4秒前
科研通AI5应助蘑菇采纳,获得10
4秒前
papa完成签到 ,获得积分10
5秒前
5秒前
sss发布了新的文献求助10
5秒前
chinning发布了新的文献求助10
5秒前
小胖鱼发布了新的文献求助10
6秒前
dzdzn关注了科研通微信公众号
6秒前
共享精神应助Zhaorf采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
peikyang发布了新的文献求助10
8秒前
藤原拓海完成签到,获得积分10
8秒前
π1完成签到 ,获得积分10
8秒前
zhangqi发布了新的文献求助10
8秒前
CCL应助wjj采纳,获得20
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678