External validation of a Cox prognostic model: principles and methods

协变量 预测模型 计算机科学 接收机工作特性
作者
Patrick Royston,Douglas G. Altman
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:13 (1): 33-33 被引量:465
标识
DOI:10.1186/1471-2288-13-33
摘要

A prognostic model should not enter clinical practice unless it has been demonstrated that it performs a useful role. External validation denotes evaluation of model performance in a sample independent of that used to develop the model. Unlike for logistic regression models, external validation of Cox models is sparsely treated in the literature. Successful validation of a model means achieving satisfactory discrimination and calibration (prediction accuracy) in the validation sample. Validating Cox models is not straightforward because event probabilities are estimated relative to an unspecified baseline function. We describe statistical approaches to external validation of a published Cox model according to the level of published information, specifically (1) the prognostic index only, (2) the prognostic index together with Kaplan-Meier curves for risk groups, and (3) the first two plus the baseline survival curve (the estimated survival function at the mean prognostic index across the sample). The most challenging task, requiring level 3 information, is assessing calibration, for which we suggest a method of approximating the baseline survival function. We apply the methods to two comparable datasets in primary breast cancer, treating one as derivation and the other as validation sample. Results are presented for discrimination and calibration. We demonstrate plots of survival probabilities that can assist model evaluation. Our validation methods are applicable to a wide range of prognostic studies and provide researchers with a toolkit for external validation of a published Cox model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JOJO完成签到,获得积分10
2秒前
所所应助niuuuuu采纳,获得10
2秒前
骑驴找马发布了新的文献求助10
2秒前
滴滴滴123发布了新的文献求助10
2秒前
wenxianxiazai123完成签到,获得积分10
2秒前
33发布了新的文献求助10
2秒前
万能图书馆应助LLQ采纳,获得10
3秒前
hk完成签到,获得积分10
5秒前
10秒前
滴滴滴123完成签到,获得积分20
11秒前
wubo完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
14秒前
问心发布了新的文献求助10
14秒前
15秒前
niuuuuu发布了新的文献求助10
16秒前
18秒前
十月完成签到,获得积分10
18秒前
江江发布了新的文献求助20
19秒前
勤奋怀蕊发布了新的文献求助10
19秒前
20秒前
20秒前
LLQ发布了新的文献求助10
21秒前
21秒前
日暮完成签到,获得积分10
21秒前
史道夫发布了新的文献求助10
23秒前
20224273发布了新的文献求助10
24秒前
longDsSnz完成签到,获得积分10
24秒前
佛系发布了新的文献求助10
25秒前
且从容完成签到,获得积分10
25秒前
隐形曼青应助Lbro采纳,获得10
25秒前
充电宝应助积极指甲油采纳,获得10
25秒前
oysp完成签到,获得积分10
28秒前
充电宝应助舟舟采纳,获得30
29秒前
深情安青应助Lei采纳,获得10
29秒前
行者张完成签到,获得积分10
30秒前
wzjs完成签到 ,获得积分10
30秒前
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153568
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861428
捐赠科研通 2462728
什么是DOI,文献DOI怎么找? 1310940
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809