Neutrophil Gelatinase–Associated Lipocalin (NGAL) as a Marker of Kidney Damage

脂质运载蛋白 医学 肾病科 肾脏疾病 急性肾损伤 中性粒细胞明胶酶相关脂蛋白 多囊肾病 泌尿系统 内科学 免疫学 生物信息学 生物
作者
Davide Bolignano,Valentina Donato,Giuseppe Coppolino,Susanna Campo,Antoine Buemi,Antonio Lacquaniti,Michele Buemi
出处
期刊:American Journal of Kidney Diseases [Elsevier]
卷期号:52 (3): 595-605 被引量:564
标识
DOI:10.1053/j.ajkd.2008.01.020
摘要

Neutrophil gelatinase–associated lipocalin (NGAL) is a protein belonging to the lipocalin superfamily initially found in activated neutrophils, in accordance with its role as an innate antibacterial factor. However, it subsequently was shown that many other types of cells, including in the kidney tubule, may produce NGAL in response to various injuries. The increase in NGAL production and release from tubular cells after harmful stimuli of various kinds may have self-defensive intent based on the activation of specific iron-dependent pathways, which in all probability also represent the mechanism through which NGAL promotes kidney growth and differentiation. NGAL levels predict the future appearance of acute kidney injury after treatments potentially detrimental to the kidney and even the acute worsening of unstable nephropathies. Furthermore, recent evidence also suggests that NGAL somehow may be involved in the pathophysiological process of chronic renal diseases, such as polycystic kidney disease and glomerulonephritis. NGAL levels clearly correlate with severity of renal impairment, probably expressing the degree of active damage underlying the chronic condition. For all these reasons, NGAL may become one of the most promising next-generation biomarkers in clinical nephrology and beyond. Neutrophil gelatinase–associated lipocalin (NGAL) is a protein belonging to the lipocalin superfamily initially found in activated neutrophils, in accordance with its role as an innate antibacterial factor. However, it subsequently was shown that many other types of cells, including in the kidney tubule, may produce NGAL in response to various injuries. The increase in NGAL production and release from tubular cells after harmful stimuli of various kinds may have self-defensive intent based on the activation of specific iron-dependent pathways, which in all probability also represent the mechanism through which NGAL promotes kidney growth and differentiation. NGAL levels predict the future appearance of acute kidney injury after treatments potentially detrimental to the kidney and even the acute worsening of unstable nephropathies. Furthermore, recent evidence also suggests that NGAL somehow may be involved in the pathophysiological process of chronic renal diseases, such as polycystic kidney disease and glomerulonephritis. NGAL levels clearly correlate with severity of renal impairment, probably expressing the degree of active damage underlying the chronic condition. For all these reasons, NGAL may become one of the most promising next-generation biomarkers in clinical nephrology and beyond. NGAL in Acute Kidney Injury: From Serendipity to UtilityAmerican Journal of Kidney DiseasesVol. 52Issue 3PreviewThe incidence of acute kidney injury (AKI) has reached epidemic proportions, affecting an estimated 7% of hospitalized patients, in whom it is an independent predictor of mortality and morbidity.1,2 In the critical care setting, the prevalence of AKI requiring dialysis is about 6%, with a mortality rate exceeding 60%.3 Once established, the treatment of AKI is largely supportive, at an annual cost surpassing $8 billion in the United States alone.4 The diagnosis currently depends on detection of reduced kidney function by the rise in serum creatinine concentration, which is a woefully inadequate measure in the acute setting for a multitude of reasons. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昭浣应助科研通管家采纳,获得10
刚刚
斯文败类应助ymh采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
zhonghang2024应助科研通管家采纳,获得10
1秒前
zhonghang2024应助科研通管家采纳,获得10
1秒前
后来应助科研通管家采纳,获得80
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
北欧海盗完成签到,获得积分10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
昭浣应助科研通管家采纳,获得10
1秒前
紫菀应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
HJJHJH发布了新的文献求助10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Jared应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
orixero应助赵玉珊采纳,获得10
2秒前
共渡完成签到,获得积分10
2秒前
3秒前
在水一方应助神奇白马儿采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642322
求助须知:如何正确求助?哪些是违规求助? 4758662
关于积分的说明 15017257
捐赠科研通 4800969
什么是DOI,文献DOI怎么找? 2566262
邀请新用户注册赠送积分活动 1524397
关于科研通互助平台的介绍 1483913