生物
信号灯
病毒学
虹彩病毒
病毒复制
免疫系统
细胞骨架
细胞生物学
发病机制
病毒
免疫学
细胞
遗传学
受体
作者
Yang Yan,Huachun Cui,Chuanyu Guo,Jingguang Wei,Youhua Huang,Lili Li,Qiwei Qin
标识
DOI:10.1099/vir.0.060608-0
摘要
Semaphorins are a large, phylogenetically conserved family of proteins that are involved in a wide range of biological processes including axonal steering, organogenesis, neoplastic transformation, as well as immune responses. In this study, a novel semaphorin homologue gene belonging to the Singapore grouper iridovirus (SGIV), ORF155R (termed SGIV-sema), was cloned and characterized. The coding region of SGIV-sema is 1728 bp in length, encoding a predicted protein with 575 aa. SGIV-sema contains a ~370 aa N-terminal Sema domain, a conserved plexin-semaphorin-integrin (PSI) domain, and an immunoglobulin (Ig)-like domain near the C terminus. SGIV-sema is an early gene product during viral infection and predominantly distributed in the cytoplasm with a speckled and clubbed pattern of appearance. Functionally, SGIV-sema could promote viral replication during SGIV infection in vitro, with no effect on the proliferation of host cells. Intriguingly, ectopically expressed SGIV-sema could alter the cytoskeletal structure of fish cells, characterized by a circumferential ring of microtubules near the nucleus and a disrupted microfilament organization. Furthermore, SGIV-sema was able to attenuate the cellular immune response, as demonstrated by decreased expression of inflammation/immune-related genes such as IL-8, IL-15, TNF-α and mediator of IRF3 activation (MITA), in SGIV-sema-expressing cells before and after SGIV infection. Ultimately, our study identified a novel, functional SGIV gene that could regulate cytoskeletal structure, immune responses and facilitate viral replication.
科研通智能强力驱动
Strongly Powered by AbleSci AI