Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe完成签到,获得积分10
1秒前
2秒前
诸葛高澜完成签到,获得积分10
3秒前
鳗鱼不尤完成签到,获得积分10
4秒前
LL完成签到,获得积分10
5秒前
Shirley完成签到,获得积分10
5秒前
kylin发布了新的文献求助10
5秒前
Liziqi823完成签到,获得积分10
6秒前
小太阳完成签到,获得积分10
6秒前
技术的不能发表完成签到 ,获得积分10
7秒前
8秒前
卡卡完成签到 ,获得积分10
8秒前
浮游应助丙队长采纳,获得10
9秒前
Aoia完成签到,获得积分10
10秒前
Hi完成签到,获得积分10
10秒前
kong完成签到,获得积分10
10秒前
左西完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
JFy完成签到 ,获得积分10
11秒前
怡然安南完成签到 ,获得积分10
13秒前
沫柠完成签到 ,获得积分10
14秒前
卡其嘛亮完成签到,获得积分10
15秒前
十五完成签到,获得积分10
15秒前
华仔应助东山采纳,获得10
16秒前
老猫头鹰完成签到,获得积分10
17秒前
liu完成签到 ,获得积分10
17秒前
19秒前
20秒前
小药童应助外星人采纳,获得10
21秒前
22秒前
22秒前
23秒前
23秒前
安琪完成签到,获得积分10
23秒前
wsqg123完成签到,获得积分10
24秒前
chang完成签到 ,获得积分10
25秒前
无限的千凝完成签到 ,获得积分10
26秒前
sm关注了科研通微信公众号
27秒前
不要慌完成签到 ,获得积分10
28秒前
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450513
求助须知:如何正确求助?哪些是违规求助? 4558247
关于积分的说明 14265829
捐赠科研通 4481797
什么是DOI,文献DOI怎么找? 2454981
邀请新用户注册赠送积分活动 1445752
关于科研通互助平台的介绍 1421882