Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
takumi完成签到,获得积分20
刚刚
Ava应助苏苏采纳,获得10
1秒前
科研通AI2S应助dd采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
ding应助siyaya采纳,获得10
4秒前
5秒前
纪富完成签到 ,获得积分10
5秒前
Redback举报巴扎嘿求助涉嫌违规
5秒前
6秒前
GongSyi完成签到 ,获得积分10
7秒前
孤独傲松发布了新的文献求助10
8秒前
ATOM发布了新的文献求助10
8秒前
8秒前
柴郡鹿发布了新的文献求助10
9秒前
9秒前
科目三应助李咸咸123采纳,获得20
9秒前
小二郎应助什么奶酪橘汁采纳,获得10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
传奇3应助王冠军采纳,获得10
12秒前
派大橘完成签到,获得积分10
12秒前
大宝发布了新的文献求助10
13秒前
无限的板栗完成签到 ,获得积分10
13秒前
justin完成签到,获得积分10
13秒前
隐形曼青应助111采纳,获得10
14秒前
15秒前
1073980795发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
维克托发布了新的文献求助10
19秒前
王kk完成签到 ,获得积分10
19秒前
情怀应助易烊千玺老婆采纳,获得10
20秒前
YF完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666691
求助须知:如何正确求助?哪些是违规求助? 4882812
关于积分的说明 15117878
捐赠科研通 4825664
什么是DOI,文献DOI怎么找? 2583534
邀请新用户注册赠送积分活动 1537723
关于科研通互助平台的介绍 1495910