Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YY发布了新的文献求助10
刚刚
刚刚
洋云子发布了新的文献求助10
刚刚
AI_S发布了新的文献求助10
刚刚
ningmeng完成签到,获得积分10
1秒前
1秒前
xin发布了新的文献求助10
1秒前
完美世界应助冷傲惠采纳,获得10
2秒前
2秒前
领导范儿应助庸人一个采纳,获得10
2秒前
XXX发布了新的文献求助10
3秒前
三余完成签到,获得积分10
3秒前
4秒前
NicotineZen发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
seven发布了新的文献求助10
5秒前
FashionBoy应助ZIS采纳,获得10
5秒前
6秒前
Hale完成签到,获得积分0
6秒前
小鲨鱼发布了新的文献求助10
6秒前
SABUBU完成签到,获得积分10
8秒前
打打应助Aurora采纳,获得10
8秒前
8秒前
豆豆小baby发布了新的文献求助10
9秒前
孙不缺完成签到,获得积分10
9秒前
kyx发布了新的文献求助20
10秒前
10秒前
科研通AI6应助Cting采纳,获得10
11秒前
11秒前
11秒前
12秒前
王大力发布了新的文献求助10
13秒前
宁宁要去看文献了完成签到,获得积分10
13秒前
丘比特应助拾柒采纳,获得10
13秒前
13秒前
Awei发布了新的文献求助10
14秒前
小二郎应助wy采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836