Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助李平采纳,获得10
刚刚
上官若男应助hyt采纳,获得10
刚刚
刚刚
调皮的晓凡完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
踏实的语山完成签到 ,获得积分10
1秒前
英吉利25发布了新的文献求助10
1秒前
大模型应助科研锐采纳,获得10
1秒前
飘逸太英发布了新的文献求助10
2秒前
2秒前
Oscillator发布了新的文献求助10
3秒前
3秒前
Criminology34应助陈小明采纳,获得10
3秒前
草帽完成签到,获得积分10
4秒前
安琪发布了新的文献求助10
4秒前
负责玉米发布了新的文献求助30
5秒前
ronll发布了新的文献求助10
6秒前
七里海完成签到,获得积分10
7秒前
科研通AI6应助安妮采纳,获得10
7秒前
芝士椰果发布了新的文献求助10
7秒前
记得笑发布了新的文献求助10
8秒前
帅帅完成签到,获得积分10
8秒前
甜蜜的大象完成签到 ,获得积分10
8秒前
风清扬发布了新的文献求助10
8秒前
8秒前
9秒前
顺利秋灵完成签到,获得积分20
10秒前
10秒前
LZS完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
科研锐发布了新的文献求助10
13秒前
zws发布了新的文献求助10
14秒前
张艺馨完成签到,获得积分10
14秒前
飘逸太英完成签到,获得积分20
14秒前
14秒前
小鲨鱼完成签到,获得积分20
15秒前
善学以致用应助记得笑采纳,获得10
15秒前
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277