Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的雅香完成签到,获得积分0
刚刚
sy完成签到,获得积分10
1秒前
CipherSage应助康康米其林采纳,获得10
1秒前
Clover04应助帅帅的大男孩采纳,获得10
1秒前
1秒前
李白发布了新的文献求助10
1秒前
内向的绮山完成签到,获得积分10
1秒前
善学以致用应助Nini1203采纳,获得10
2秒前
111完成签到 ,获得积分10
2秒前
冯志华完成签到,获得积分10
5秒前
5秒前
平淡的雁开完成签到 ,获得积分10
6秒前
lpw完成签到 ,获得积分10
6秒前
行云流水完成签到,获得积分10
7秒前
WWXWWX应助caleb采纳,获得10
7秒前
风中清炎发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助李白采纳,获得10
7秒前
onethree完成签到 ,获得积分10
7秒前
科目三应助无语的惜芹采纳,获得10
8秒前
小玲仔完成签到 ,获得积分10
8秒前
8秒前
蓝桉完成签到 ,获得积分10
8秒前
沈小葵完成签到,获得积分10
9秒前
逗号先生完成签到,获得积分20
9秒前
smallsix完成签到,获得积分20
10秒前
11秒前
11秒前
会发光的碳完成签到,获得积分10
11秒前
IKUN发布了新的文献求助10
11秒前
华仔应助三千弱水为君饮采纳,获得10
11秒前
小趴菜完成签到,获得积分10
12秒前
13秒前
阿里山完成签到,获得积分10
13秒前
14秒前
刘秀完成签到 ,获得积分10
15秒前
15秒前
感动归尘发布了新的文献求助10
16秒前
527完成签到,获得积分10
17秒前
萌神_HUGO发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567