Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河完成签到,获得积分10
1秒前
SDNUDRUG完成签到,获得积分10
1秒前
Rex完成签到,获得积分20
1秒前
LU41完成签到,获得积分10
1秒前
okbasf完成签到,获得积分10
1秒前
平常的镜子应助dingning采纳,获得20
3秒前
4秒前
完美世界应助迷路以筠采纳,获得10
7秒前
momo完成签到,获得积分10
8秒前
8秒前
lewis发布了新的文献求助10
9秒前
浪迹天涯应助求助采纳,获得10
9秒前
六月发布了新的文献求助10
9秒前
乌梅不乌发布了新的文献求助10
9秒前
八二力完成签到 ,获得积分10
9秒前
9秒前
14秒前
一夜很静应助迷人素采纳,获得10
15秒前
15秒前
耍酷的夏云应助SV采纳,获得10
17秒前
六月完成签到,获得积分10
21秒前
Anquan发布了新的文献求助10
21秒前
善学以致用应助好难啊采纳,获得10
21秒前
悦耳觅荷发布了新的文献求助10
22秒前
22秒前
23秒前
十七完成签到 ,获得积分10
23秒前
23秒前
ccerr完成签到,获得积分10
24秒前
24秒前
乌梅不乌完成签到,获得积分10
24秒前
24秒前
和谐的寄凡完成签到,获得积分10
25秒前
Millennial发布了新的文献求助10
26秒前
诸笑白发布了新的文献求助10
26秒前
车秋寒发布了新的文献求助10
26秒前
27秒前
我是老大应助张学友采纳,获得30
30秒前
xiangxiang发布了新的文献求助10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851