Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
3秒前
十八发布了新的文献求助10
3秒前
3秒前
4秒前
陈宏宇发布了新的文献求助10
4秒前
爆米花应助包佳梁采纳,获得10
5秒前
5秒前
5秒前
小蘑菇应助twhyyds采纳,获得10
6秒前
Owen应助6633采纳,获得10
6秒前
7秒前
7秒前
谢嘻嘻嘻嘻完成签到,获得积分10
7秒前
铮铮铁骨发布了新的文献求助10
7秒前
隐形便当完成签到 ,获得积分10
8秒前
didididm发布了新的文献求助10
9秒前
wang1780发布了新的文献求助10
9秒前
深情安青应助boyudud采纳,获得10
10秒前
photogragher发布了新的文献求助10
10秒前
辛夷完成签到,获得积分20
10秒前
Jksss发布了新的文献求助10
11秒前
mirror完成签到,获得积分10
11秒前
14秒前
15秒前
JamesPei应助铮铮铁骨采纳,获得10
16秒前
rao完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
hunbaekkkkk发布了新的文献求助10
18秒前
朔气传金柝完成签到,获得积分10
19秒前
科研通AI6应助困困包采纳,获得10
20秒前
20秒前
张彤彤完成签到,获得积分10
21秒前
Krsky完成签到,获得积分10
22秒前
炸鸡叔完成签到,获得积分10
22秒前
包佳梁发布了新的文献求助10
22秒前
111发布了新的文献求助10
24秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5501422
求助须知:如何正确求助?哪些是违规求助? 4597711
关于积分的说明 14460536
捐赠科研通 4531236
什么是DOI,文献DOI怎么找? 2483206
邀请新用户注册赠送积分活动 1466751
关于科研通互助平台的介绍 1439386