重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ray发布了新的文献求助10
刚刚
刚刚
有益发布了新的文献求助10
1秒前
1秒前
GQL完成签到,获得积分10
1秒前
1秒前
张风琴发布了新的文献求助10
1秒前
在水一方应助喜之郎采纳,获得10
2秒前
向日葵完成签到,获得积分10
2秒前
baoleijia发布了新的文献求助10
2秒前
2秒前
小鱼鱼发布了新的文献求助10
3秒前
幽默尔蓝发布了新的文献求助10
3秒前
3秒前
玛璃鸶完成签到,获得积分10
4秒前
共享精神应助GQL采纳,获得10
4秒前
分析发布了新的文献求助20
4秒前
4秒前
兴奋巧凡完成签到 ,获得积分10
4秒前
5秒前
pjjpk01完成签到,获得积分10
5秒前
酷波er应助积极大门采纳,获得10
5秒前
Zhixiang发布了新的文献求助10
5秒前
淡定的半鬼完成签到,获得积分10
5秒前
5秒前
5秒前
阿海的发布了新的文献求助10
6秒前
吴彦祖应助科研通管家采纳,获得15
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
koi发布了新的文献求助10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Ox1dant完成签到,获得积分10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
古木发布了新的文献求助10
7秒前
7秒前
传奇3应助WIN采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466380
求助须知:如何正确求助?哪些是违规求助? 4570254
关于积分的说明 14324125
捐赠科研通 4496749
什么是DOI,文献DOI怎么找? 2463571
邀请新用户注册赠送积分活动 1452461
关于科研通互助平台的介绍 1427543