Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元气马完成签到,获得积分10
2秒前
香蕉觅云应助和谐的阁采纳,获得10
2秒前
2秒前
3秒前
cpli完成签到,获得积分10
4秒前
xiezhenghong发布了新的文献求助30
5秒前
老实的季节完成签到 ,获得积分10
5秒前
mr_beard完成签到 ,获得积分10
7秒前
浮游应助O倻采纳,获得10
8秒前
JL发布了新的文献求助10
8秒前
如意忆梅完成签到,获得积分10
9秒前
REBECCA发布了新的文献求助10
10秒前
Limengjie完成签到,获得积分10
11秒前
13秒前
13秒前
老实的季节关注了科研通微信公众号
15秒前
一颗星完成签到,获得积分10
15秒前
15秒前
16秒前
梁富源完成签到,获得积分10
16秒前
拉克丝完成签到 ,获得积分10
18秒前
李方硕发布了新的文献求助10
18秒前
20秒前
姜宇航完成签到,获得积分10
22秒前
段甜发布了新的文献求助10
22秒前
卡梅拉完成签到,获得积分10
23秒前
端庄忆梅发布了新的文献求助10
23秒前
ABB完成签到,获得积分10
23秒前
24秒前
rainc发布了新的文献求助10
24秒前
Nefelibata完成签到,获得积分10
25秒前
26秒前
思源应助摩尔曼斯克采纳,获得10
28秒前
情怀应助小曦采纳,获得10
29秒前
张张发布了新的文献求助10
31秒前
明亮的代柔完成签到 ,获得积分20
31秒前
高高谷槐发布了新的文献求助10
32秒前
XQQDD完成签到,获得积分10
32秒前
李方硕完成签到,获得积分10
32秒前
33秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350352
求助须知:如何正确求助?哪些是违规求助? 4483809
关于积分的说明 13957134
捐赠科研通 4383087
什么是DOI,文献DOI怎么找? 2408154
邀请新用户注册赠送积分活动 1400795
关于科研通互助平台的介绍 1374230