Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach

药效团 化学 药物发现 多巴胺受体D3 同源建模 计算生物学 G蛋白偶联受体 虚拟筛选 视紫红质 立体化学 受体 多巴胺受体 生物化学 生物 视网膜
作者
Judith Varady,Xihan Wu,Xueliang Fang,Min Ji,Zengjian Hu,Beth Levant,Shaomeng Wang
出处
期刊:Journal of Medicinal Chemistry [American Chemical Society]
卷期号:46 (21): 4377-4392 被引量:127
标识
DOI:10.1021/jm030085p
摘要

The dopamine 3 (D3) subtype receptor has been implicated in several neurological conditions, and potent and selective D3 ligands may have therapeutic potential for the treatment of drug addiction, Parkinson's disease, and schizophrenia. In this paper, we report computational homology modeling of the D3 receptor based upon the high-resolution X-ray structure of rhodopsin, extensive structural refinement in the presence of explicit lipid bilayer and water environment, and validation of the refined D3 structural models using experimental data. We further describe the development, validation, and application of a hybrid computational screening approach for the discovery of several classes of novel and potent D3 ligands. This computational approach employs stepwise pharmacophore and structure-based searching of a large three-dimensional chemical database for the identification of potential D3 ligands. The obtained hits are then subjected to structural novelty screening, and the most promising compounds are tested in a D3 binding assay. Using this approach we identified four compounds with K(i) values better than 100 nM and eight compounds with K(i) values better than 1 microM out of 20 compounds selected for testing in the D3 receptor binding assay. Our results suggest that the D3 structural models obtained from this study may be useful for the discovery and design of novel and potent D3 ligands. Furthermore, the employed hybrid approach may be more effective for lead discovery from a large chemical database than either pharmacophore-based or structure-based database screening alone.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红火完成签到 ,获得积分10
刚刚
孙孙完成签到,获得积分20
刚刚
1秒前
84W1yX发布了新的文献求助10
2秒前
3秒前
wxx完成签到 ,获得积分10
3秒前
wang发布了新的文献求助10
5秒前
Muth发布了新的文献求助10
7秒前
uu完成签到 ,获得积分10
8秒前
ayayaya完成签到 ,获得积分10
9秒前
青葱鱼块完成签到 ,获得积分10
10秒前
哇哈哈关注了科研通微信公众号
10秒前
11秒前
唐一完成签到,获得积分10
11秒前
84W1yX完成签到,获得积分10
12秒前
13秒前
无极微光应助aliderichang采纳,获得20
13秒前
慕青应助wang采纳,获得10
14秒前
共享精神应助美满的红酒采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
年轻绮波完成签到,获得积分10
16秒前
我来也完成签到 ,获得积分10
17秒前
一个西藏发布了新的文献求助10
19秒前
孙孙发布了新的文献求助10
20秒前
歇洛克驳回了852应助
20秒前
Tian完成签到,获得积分10
20秒前
Hello应助Snoopy采纳,获得10
20秒前
fge完成签到,获得积分10
22秒前
……发布了新的文献求助10
22秒前
TTLOVEDXX完成签到,获得积分10
22秒前
24秒前
小二郎应助Alarack采纳,获得10
24秒前
蟹治猿完成签到 ,获得积分10
25秒前
jitianxing发布了新的文献求助10
28秒前
酷波er应助猪猪hero采纳,获得10
28秒前
pluto应助猪猪hero采纳,获得10
28秒前
危机的阁应助猪猪hero采纳,获得30
28秒前
Lucas应助猪猪hero采纳,获得10
28秒前
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832