The Mechanism of Methanol to Hydrocarbon Catalysis

催化作用 微型多孔材料 化学 烯烃纤维 甲醇 沸石 诱导期 碳氢化合物 有机化学 反应机理
作者
James F. Haw,Weiguo Song,David M. Marcus,John B. Nicholas
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:36 (5): 317-326 被引量:916
标识
DOI:10.1021/ar020006o
摘要

The process of converting methanol to hydrocarbons on the aluminosilicate zeolite HZSM-5 was originally developed as a route from natural gas to synthetic gasoline. Using other microporous catalysts that are selective for light olefins, methanol-to-olefin (MTO) catalysis may soon become central to the conversion of natural gas to polyolefins. The mechanism of methanol conversion proved to be an intellectually challenging problem; 25 years of fundamental study produced at least 20 distinct mechanisms, but most did not account for either the primary products or a kinetic induction period. Recent experimental and theoretical work has firmly established that methanol and dimethyl ether react on cyclic organic species contained in the cages or channels of the inorganic host. These organic reaction centers act as scaffolds for the assembly of light olefins so as to avoid the high high-energy intermediates required by all "direct" mechanisms. The rate of formation of the initial reaction centers, and hence the duration of the kinetic induction period, can be governed by impurity species. Secondary reactions of primary olefin products strongly reflect the topology and acid strength of the microporous catalyst. Reaction centers form continuously through some secondary pathways, and they age into polycyclic aromatic hydrocarbons, eventually deactivating the catalyst. It proves useful to consider each cage (or channel) with its included organic and inorganic species as a supramolecule that can react to form various species. This view allows us to identify structure−activity and structure selectivity relationships and to modify the catalyst with degrees of freedom that are more reminiscent of homogeneous catalysis than heterogeneous catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
刚刚
正道魁首发布了新的文献求助10
刚刚
科研通AI5应助一只咸鱼采纳,获得10
刚刚
cherry406发布了新的文献求助10
刚刚
谢同学完成签到,获得积分10
刚刚
999完成签到 ,获得积分10
2秒前
万灵竹发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
顺心稀完成签到,获得积分10
5秒前
NexusExplorer应助正道魁首采纳,获得10
5秒前
6秒前
渊崖曙春应助Selanchole采纳,获得10
6秒前
乐乐应助lin采纳,获得10
7秒前
称心的乘云完成签到,获得积分10
8秒前
星辰大海应助shmily采纳,获得10
8秒前
8秒前
9秒前
Akim应助mm采纳,获得10
9秒前
充电宝应助LeungYM采纳,获得30
10秒前
10秒前
聪明伊发布了新的文献求助10
11秒前
果果科研发布了新的文献求助10
11秒前
halo发布了新的文献求助10
12秒前
w_发布了新的文献求助10
12秒前
13秒前
千听听发布了新的文献求助10
13秒前
学医的小胖子完成签到 ,获得积分10
13秒前
许容发布了新的文献求助10
15秒前
15秒前
ldngis发布了新的文献求助10
15秒前
16秒前
在水一方应助李还好采纳,获得10
16秒前
princecoof发布了新的文献求助10
17秒前
Selanchole完成签到,获得积分20
17秒前
刘振扬发布了新的文献求助10
18秒前
nekoneko完成签到,获得积分10
19秒前
19秒前
呆萌晓啸发布了新的文献求助10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312