Geographical origin and authentication of extra virgin olive oils by an electronic nose in combination with artificial neural networks

电子舌 电子鼻 橄榄油 人工神经网络 化学 生物系统 模式识别(心理学) 人工智能 计算机科学 食品科学 生物 品味
作者
Maria Stella Cosio,Davide Ballabio,Simona Benedetti,C. Gigliotti
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:567 (2): 202-210 被引量:148
标识
DOI:10.1016/j.aca.2006.03.035
摘要

An electronic nose and an electronic tongue, in combination with multivariate analysis, have been used to verify the geographical origin and the uniqueness of specific extra virgin olive oils. The olive oil samples belong to a small production, located in the lake of Garda (north of Italy) and distinguished with a European Protected Denomination of Origin trademark since 1998. In order to obtain a complete description of oil samples, free acidity, peroxide value, ultraviolet indices, and phenol content have been also determined. The dataset includes 36 Garda oils and 17 oils from other regions. Two classification models have been built by means of Counterpropagation Artificial Neural Networks in order to separate Garda and not-Garda oils, as follows: first, by using all the chemical variables and sensor signals; second, by using electronic tongue sensors; finally, by using four selected electronic nose sensors. All the models have been also tested with 19 commercial olive oil samples. Neural networks have provided very satisfactory results and have indicated the electronic nose as the most appropriate tool for the characterization of the analyzed oils. These results have suggested how electronic nose, in combination with neural networks, could represent a fast, cheap and functional method to classify and describe extra virgin olive oils from a circumscribed geographical area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
某某某发布了新的文献求助10
2秒前
2秒前
谦让友绿发布了新的文献求助10
3秒前
yuki发布了新的文献求助10
3秒前
千寻完成签到,获得积分10
4秒前
5秒前
打打应助ikun采纳,获得10
5秒前
烂漫荔枝发布了新的文献求助10
7秒前
传奇3应助入门的橙橙采纳,获得10
7秒前
8秒前
哈拉少发布了新的文献求助10
8秒前
hang完成签到,获得积分10
10秒前
愤怒的蛋挞完成签到,获得积分10
10秒前
汉堡包应助活力芝麻采纳,获得10
10秒前
绿兔子发布了新的文献求助10
10秒前
自由莆发布了新的文献求助30
10秒前
赘婿应助求知的周采纳,获得10
10秒前
yolo发布了新的文献求助10
11秒前
桐桐应助jing采纳,获得10
11秒前
Nero完成签到,获得积分10
11秒前
LMZ完成签到,获得积分10
11秒前
hang发布了新的文献求助10
12秒前
14秒前
豆腐青菜雨完成签到 ,获得积分10
14秒前
看不懂发布了新的文献求助10
15秒前
123456完成签到,获得积分10
15秒前
15秒前
斯文败类应助modesty采纳,获得10
16秒前
酷波er应助某某某采纳,获得10
16秒前
16秒前
asa发布了新的文献求助10
17秒前
凌风完成签到,获得积分10
18秒前
爆米花应助烟雨醉巷采纳,获得10
19秒前
19秒前
旷野发布了新的文献求助10
19秒前
华仔应助kongmou采纳,获得10
19秒前
ikun发布了新的文献求助10
19秒前
超帅的怡发布了新的文献求助10
20秒前
cuifeng完成签到,获得积分10
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470791
求助须知:如何正确求助?哪些是违规求助? 3063758
关于积分的说明 9085407
捐赠科研通 2754254
什么是DOI,文献DOI怎么找? 1511347
邀请新用户注册赠送积分活动 698380
科研通“疑难数据库(出版商)”最低求助积分说明 698253