Saliency Based Ulcer Detection for Wireless Capsule Endoscopy Diagnosis

人工智能 计算机科学 胶囊内镜 计算机视觉 模式识别(心理学) 特征提取 显著性图 图像(数学) 医学 放射科
作者
Yixuan Yuan,Jiaole Wang,Baopu Li,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 2046-2057 被引量:134
标识
DOI:10.1109/tmi.2015.2418534
摘要

Ulcer is one of the most common symptoms of many serious diseases in the human digestive tract. Especially for the ulcers in the small bowel where other procedures cannot adequately visualize, wireless capsule endoscopy (WCE) is increasingly being used in the diagnosis and clinical management. Because WCE generates large amount of images from the whole process of inspection, computer-aided detection of ulcer is considered an indispensable relief to clinicians. In this paper, a two-staged fully automated computer-aided detection system is proposed to detect ulcer from WCE images. In the first stage, we propose an effective saliency detection method based on multi-level superpixel representation to outline the ulcer candidates. To find the perceptually and semantically meaningful salient regions, we first segment the image into multi-level superpixel segmentations. Each level corresponds to different initial region sizes of the superpixels. Then we evaluate the corresponding saliency according to the color and texture features in superpixel region of each level. In the end, we fuse the saliency maps from all levels together to obtain the final saliency map. In the second stage, we apply the obtained saliency map to better encode the image features for the ulcer image recognition tasks. Because the ulcer mainly corresponds to the saliency region, we propose a saliency max-pooling method integrated with the Locality-constrained Linear Coding (LLC) method to characterize the images. Experiment results achieve promising 92.65% accuracy and 94.12% sensitivity, validating the effectiveness of the proposed method. Moreover, the comparison results show that our detection system outperforms the state-of-the-art methods on the ulcer classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷谷完成签到,获得积分20
刚刚
1秒前
可乐发布了新的文献求助10
1秒前
2秒前
2秒前
木木发布了新的文献求助30
2秒前
3秒前
3秒前
科目三应助hui采纳,获得10
4秒前
4秒前
dili给dili的求助进行了留言
4秒前
虚心的大树完成签到 ,获得积分20
5秒前
5秒前
Yuki完成签到,获得积分10
5秒前
明亮冰颜发布了新的文献求助10
6秒前
prigogin发布了新的文献求助10
6秒前
shaqima完成签到,获得积分10
6秒前
王木木发布了新的文献求助10
7秒前
无限冬卉发布了新的文献求助10
7秒前
嘿嘿哒发布了新的文献求助10
9秒前
shelly完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
英俊的铭应助糟糕的铁锤采纳,获得10
9秒前
Jenny完成签到,获得积分10
10秒前
wanci应助YYL采纳,获得10
10秒前
小徐同学完成签到,获得积分20
11秒前
11秒前
正直海冬完成签到 ,获得积分10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
丘比特应助charint采纳,获得10
12秒前
13秒前
bkagyin应助庸俞鳙鱼采纳,获得10
13秒前
田様应助mdalmahadi采纳,获得200
13秒前
14秒前
16秒前
seagull发布了新的文献求助10
16秒前
孤独雪柳发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729907
求助须知:如何正确求助?哪些是违规求助? 5320921
关于积分的说明 15317727
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619565
邀请新用户注册赠送积分活动 1569026
关于科研通互助平台的介绍 1525640