Saliency Based Ulcer Detection for Wireless Capsule Endoscopy Diagnosis

人工智能 计算机科学 胶囊内镜 计算机视觉 模式识别(心理学) 特征提取 显著性图 图像(数学) 医学 放射科
作者
Yixuan Yuan,Jiaole Wang,Baopu Li,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 2046-2057 被引量:134
标识
DOI:10.1109/tmi.2015.2418534
摘要

Ulcer is one of the most common symptoms of many serious diseases in the human digestive tract. Especially for the ulcers in the small bowel where other procedures cannot adequately visualize, wireless capsule endoscopy (WCE) is increasingly being used in the diagnosis and clinical management. Because WCE generates large amount of images from the whole process of inspection, computer-aided detection of ulcer is considered an indispensable relief to clinicians. In this paper, a two-staged fully automated computer-aided detection system is proposed to detect ulcer from WCE images. In the first stage, we propose an effective saliency detection method based on multi-level superpixel representation to outline the ulcer candidates. To find the perceptually and semantically meaningful salient regions, we first segment the image into multi-level superpixel segmentations. Each level corresponds to different initial region sizes of the superpixels. Then we evaluate the corresponding saliency according to the color and texture features in superpixel region of each level. In the end, we fuse the saliency maps from all levels together to obtain the final saliency map. In the second stage, we apply the obtained saliency map to better encode the image features for the ulcer image recognition tasks. Because the ulcer mainly corresponds to the saliency region, we propose a saliency max-pooling method integrated with the Locality-constrained Linear Coding (LLC) method to characterize the images. Experiment results achieve promising 92.65% accuracy and 94.12% sensitivity, validating the effectiveness of the proposed method. Moreover, the comparison results show that our detection system outperforms the state-of-the-art methods on the ulcer classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kiki完成签到,获得积分10
1秒前
Joey发布了新的文献求助10
2秒前
共享精神应助yibo采纳,获得10
3秒前
4秒前
4秒前
激昂的璎完成签到,获得积分10
4秒前
虚心的芹发布了新的文献求助10
5秒前
5秒前
李爱国应助追寻夜安采纳,获得10
7秒前
雪白冰之完成签到,获得积分10
7秒前
LiLi完成签到,获得积分10
7秒前
9秒前
沉潜完成签到,获得积分10
9秒前
甜甜芾完成签到,获得积分10
9秒前
热心市民小红花应助赵赵采纳,获得10
10秒前
果实发布了新的文献求助10
10秒前
高一文发布了新的文献求助30
12秒前
石龙子完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
情怀应助TszPok采纳,获得10
14秒前
14秒前
毕葛完成签到 ,获得积分10
14秒前
15秒前
15秒前
彼岸花完成签到,获得积分10
15秒前
今后应助ting采纳,获得10
15秒前
古古怪界丶黑大帅完成签到,获得积分20
17秒前
彭于晏应助耕牛热采纳,获得10
17秒前
yibo发布了新的文献求助10
17秒前
Gentle发布了新的文献求助10
17秒前
海派Hi完成签到 ,获得积分10
18秒前
山羊完成签到,获得积分10
18秒前
18秒前
18秒前
李健的小迷弟应助Ricky采纳,获得10
19秒前
zhy完成签到,获得积分10
19秒前
今后应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
陶1122发布了新的文献求助10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149