人工智能
计算机科学
胶囊内镜
计算机视觉
模式识别(心理学)
特征提取
显著性图
图像(数学)
医学
放射科
作者
Yixuan Yuan,Jiaole Wang,Baopu Li,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2015-04-03
卷期号:34 (10): 2046-2057
被引量:134
标识
DOI:10.1109/tmi.2015.2418534
摘要
Ulcer is one of the most common symptoms of many serious diseases in the human digestive tract. Especially for the ulcers in the small bowel where other procedures cannot adequately visualize, wireless capsule endoscopy (WCE) is increasingly being used in the diagnosis and clinical management. Because WCE generates large amount of images from the whole process of inspection, computer-aided detection of ulcer is considered an indispensable relief to clinicians. In this paper, a two-staged fully automated computer-aided detection system is proposed to detect ulcer from WCE images. In the first stage, we propose an effective saliency detection method based on multi-level superpixel representation to outline the ulcer candidates. To find the perceptually and semantically meaningful salient regions, we first segment the image into multi-level superpixel segmentations. Each level corresponds to different initial region sizes of the superpixels. Then we evaluate the corresponding saliency according to the color and texture features in superpixel region of each level. In the end, we fuse the saliency maps from all levels together to obtain the final saliency map. In the second stage, we apply the obtained saliency map to better encode the image features for the ulcer image recognition tasks. Because the ulcer mainly corresponds to the saliency region, we propose a saliency max-pooling method integrated with the Locality-constrained Linear Coding (LLC) method to characterize the images. Experiment results achieve promising 92.65% accuracy and 94.12% sensitivity, validating the effectiveness of the proposed method. Moreover, the comparison results show that our detection system outperforms the state-of-the-art methods on the ulcer classification task.
科研通智能强力驱动
Strongly Powered by AbleSci AI