Saliency Based Ulcer Detection for Wireless Capsule Endoscopy Diagnosis

人工智能 计算机科学 胶囊内镜 计算机视觉 模式识别(心理学) 特征提取 显著性图 图像(数学) 医学 放射科
作者
Yixuan Yuan,Jiaole Wang,Baopu Li,Max Q.‐H. Meng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 2046-2057 被引量:134
标识
DOI:10.1109/tmi.2015.2418534
摘要

Ulcer is one of the most common symptoms of many serious diseases in the human digestive tract. Especially for the ulcers in the small bowel where other procedures cannot adequately visualize, wireless capsule endoscopy (WCE) is increasingly being used in the diagnosis and clinical management. Because WCE generates large amount of images from the whole process of inspection, computer-aided detection of ulcer is considered an indispensable relief to clinicians. In this paper, a two-staged fully automated computer-aided detection system is proposed to detect ulcer from WCE images. In the first stage, we propose an effective saliency detection method based on multi-level superpixel representation to outline the ulcer candidates. To find the perceptually and semantically meaningful salient regions, we first segment the image into multi-level superpixel segmentations. Each level corresponds to different initial region sizes of the superpixels. Then we evaluate the corresponding saliency according to the color and texture features in superpixel region of each level. In the end, we fuse the saliency maps from all levels together to obtain the final saliency map. In the second stage, we apply the obtained saliency map to better encode the image features for the ulcer image recognition tasks. Because the ulcer mainly corresponds to the saliency region, we propose a saliency max-pooling method integrated with the Locality-constrained Linear Coding (LLC) method to characterize the images. Experiment results achieve promising 92.65% accuracy and 94.12% sensitivity, validating the effectiveness of the proposed method. Moreover, the comparison results show that our detection system outperforms the state-of-the-art methods on the ulcer classification task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助向暖采纳,获得10
刚刚
CipherSage应助cencen采纳,获得10
刚刚
Nomb1发布了新的文献求助10
1秒前
今后应助学术大佬阿呆采纳,获得10
1秒前
Crescent发布了新的文献求助10
3秒前
李子完成签到,获得积分10
3秒前
酷波er应助唐唐采纳,获得10
3秒前
4秒前
脑洞疼应助Nomb1采纳,获得10
5秒前
万能图书馆应助九儿采纳,获得10
5秒前
6秒前
左丘秋尽完成签到,获得积分10
7秒前
__发布了新的文献求助10
7秒前
小白发布了新的文献求助10
8秒前
子车茗应助科研菜鸟采纳,获得10
8秒前
10秒前
Lucas应助陈晨采纳,获得10
11秒前
董小白发布了新的文献求助10
12秒前
rrraymond完成签到,获得积分10
13秒前
Thi发布了新的文献求助10
13秒前
苗元槐完成签到 ,获得积分10
13秒前
小北发布了新的文献求助10
14秒前
沉默的玩偶完成签到,获得积分10
15秒前
17秒前
19秒前
22秒前
向暖发布了新的文献求助10
22秒前
23秒前
苏苏苏发布了新的文献求助10
23秒前
昏睡的妙梦完成签到,获得积分10
24秒前
等乙天发布了新的文献求助10
24秒前
Seven完成签到,获得积分10
24秒前
25秒前
万能图书馆应助WTQ采纳,获得10
26秒前
cervantes发布了新的文献求助10
26秒前
yiersan发布了新的文献求助10
28秒前
科研菜鸟完成签到,获得积分10
28秒前
打打应助karstbing采纳,获得30
29秒前
斯文败类应助度ewf采纳,获得10
31秒前
水滴发布了新的文献求助20
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563404
求助须知:如何正确求助?哪些是违规求助? 4648237
关于积分的说明 14684240
捐赠科研通 4590274
什么是DOI,文献DOI怎么找? 2518398
邀请新用户注册赠送积分活动 1491088
关于科研通互助平台的介绍 1462369