纳米棒
光催化
材料科学
X射线光电子能谱
可见光谱
带隙
兴奋剂
掺杂剂
吸收边
煅烧
漫反射红外傅里叶变换
纳米技术
化学工程
光电子学
化学
有机化学
催化作用
工程类
作者
Jiaguo Yu,Quanjun Xiang,Minghua Zhou
标识
DOI:10.1016/j.apcatb.2009.04.021
摘要
Fe-doped TiO2 (Fe-TiO2) nanorods were prepared by an impregnating-calcination method using the hydrothermally prepared titanate nanotubes as precursors and Fe(NO3)3 as dopant. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, N2 adsorption–desorption isotherms and UV–vis spectroscopy. The photocatalytic activity was evaluated by the photocatalytic oxidation of acetone in air under visible-light irradiation. The results show that Fe-doping greatly enhance the visible-light photocatalytic activity of mesoporous TiO2 nanorods, and when the atomic ratio of Fe/Ti (RFe) is in the range of 0.1–1.0%, the photocatalytic activity of the samples is higher than that of Degussa P25 and pure TiO2 nanorods. At RFe = 0.5%, the photocatalytic activity of Fe-TiO2 nanorods exceeds that of Degussa P25 by a factor of more than two times. This is ascribed to the fact that the one-dimensional nanostructure can enhance the transfer and transport of charge carrier, the Fe-doping induces the shift of the absorption edge into the visible-light range with the narrowing of the band gap and reduces the recombination of photo-generated electrons and holes. Furthermore, the first-principle density functional theory (DFT) calculation further confirms the red shift of absorption edges and the narrowing of band gap of Fe-TiO2 nanorods.
科研通智能强力驱动
Strongly Powered by AbleSci AI