Ecological risk assessment and priority setting for typical toxic pollutants in the water from Beijing-Tianjin-Bohai area using Bayesian matbugs calculator (BMC)

克丽舍恩 环境科学 环境化学 北京 甲氧氯 污染物 风险评估 毒理 杀虫剂 化学 生态学 地理 中国 生物 有机化学 考古 计算机科学 计算机安全
作者
Wei He,Ning Qin,Xiangzhen Kong,Wenxiu Liu,Weihong Wu,Qing He,Chen Yang,Yu-Jiao Jiang,Qingmei Wang,Bin Yang,Fu-Liu Xu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:45: 209-218 被引量:36
标识
DOI:10.1016/j.ecolind.2014.04.008
摘要

• A novel platform, namely BMC, was developed for ecological risk assessment. • The water bodies in Hebei had the greatest risk followed by Tianjin and Beijing. • DDT metabolites and HCH isomers posed remarkable ecological risk in BTB areas. • BMC is a friendly, easily, efficient tool to set the controlling priority of PTSs. A novel platform, named the Bayesian matbugs calculator (BMC), was developed to select the best SSD model, assess ecological risk at high-, mid- and low-levels of the 95% credible interval (CI), and to set the priority of toxic substances. The BMC platform was applied to the ecological risk assessment and priority setting of 32 toxic substances, including polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs), in the water from the Beijing-Tianjin-Bohai (BTB) area of northern China. The results showed that most of the studied PAH and OCP compounds have a high-level ecological risk with potential affected fraction (PAF) > 10 −3 except for benzo(a)anthracene, pyrene, chrysene and β-hexachlorocyclohexane (β-HCH). The Yongdinghe River, Yongdingxinhe River, and Guanting Reservoir had the highest multiple substance combined PAF (msPAF) at mid-level, whereas the Qingshuihe River had the lowest msPAF, ranging from 2.91 × 10 −7 to 1.15 × 10 −1 at various levels. On the basis of ecological risk at the high level of 95% CI, the priorities for PAHs and OCPs were anthracene, chrysene, benzo(a)pyrene, δ-HCH, p,p′-dichlorodiphenyldichloroethane (p,p′-DDD), heptachlor epoxide, endosulfan sulfate, methoxychlor, and endosulfan II. The BMC platform can be concluded to be a friendly, accessible, efficient tool to select the best SSD model, calculate relevant indicators, assess ecological risks with uncertainty, and to set the priority of toxic substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小菜完成签到 ,获得积分10
刚刚
刚刚
卜冥发布了新的文献求助10
刚刚
Muncy完成签到 ,获得积分10
1秒前
Yang完成签到,获得积分10
1秒前
1秒前
彭于晏应助MM采纳,获得10
1秒前
求知完成签到 ,获得积分10
1秒前
1秒前
大模型应助0.0.123采纳,获得10
2秒前
ah_junlei发布了新的文献求助10
2秒前
2秒前
吟賞烟霞完成签到,获得积分10
2秒前
咖啡豆完成签到,获得积分10
2秒前
2秒前
冯岗完成签到,获得积分10
2秒前
dyd完成签到,获得积分10
3秒前
yan1875完成签到,获得积分10
3秒前
心系天下完成签到 ,获得积分10
3秒前
sunsold完成签到,获得积分10
3秒前
Wang完成签到,获得积分10
3秒前
枳奺完成签到 ,获得积分10
4秒前
majun发布了新的文献求助10
4秒前
winfree完成签到 ,获得积分10
5秒前
领导范儿应助ProfWang采纳,获得10
5秒前
Ttimer完成签到,获得积分10
5秒前
李健应助何金英采纳,获得10
6秒前
6秒前
五虎完成签到,获得积分10
6秒前
科研通AI6应助是大胖子呀采纳,获得10
6秒前
6秒前
FUNG完成签到 ,获得积分10
6秒前
6秒前
7秒前
刘磊完成签到,获得积分10
7秒前
tgd完成签到,获得积分10
7秒前
Aero发布了新的文献求助10
7秒前
Ana完成签到,获得积分10
8秒前
太叔明辉发布了新的文献求助10
8秒前
张婷完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4881768
求助须知:如何正确求助?哪些是违规求助? 4167672
关于积分的说明 12930198
捐赠科研通 3927391
什么是DOI,文献DOI怎么找? 2155430
邀请新用户注册赠送积分活动 1173669
关于科研通互助平台的介绍 1078479