Recently, an increasing number of studies use ecoenzymatic stoichiometry for determining nutritional status or nutrient limitations of microbes. According to the ecoenzymatic stoichiometry theory, the ratios of β-1,4-glucosidase (BG) and β-1,4-N-acetylglucosaminidase (NAG) (BG:NAG) or BG and NAG + leucine aminopeptidase (LAP) (BG:(BG + LAP)) reflect microbial carbon (C) vs nitrogen (N) limitation, with larger ratios indicating C limitation. However, several studies reported that the ratios did not reflect the C vs N limitations. In this paper, I propose a new conceptual model to distinguish when BG:NAG (or BG:(BG + NAG)) reflects microbial C vs N limitation and when not: If cellulose is a predominant C source (relative to chitin, peptidoglycan, and protein), BG:NAG (or BG:(BG + NAG)) reflects the C vs N limitation as the enzymatic stoichiometry theory suggests, while if chitin, peptidoglycan, and protein are dominant C sources, C vs N limitation cannot be determined by BG:NAG (or BG:(BG + NAG)).