Removing Ring Artefacts for Photon-Counting Detectors Using Neural Networks in Different Domains

光子计数 探测器 计算机科学 人工神经网络 戒指(化学) 光子 人工智能 物理 光学 电信 化学 有机化学
作者
Wei Fang,Liang Li,Zhiqiang Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 42447-42457 被引量:18
标识
DOI:10.1109/access.2020.2977096
摘要

The development of energy-resolving photon-counting detectors provides a new approach for obtaining spectral information in computed tomography. However, the responses of different photon counting detector pixels can be inconsistent, which will always cause stripe artefacts in projection domain and concentric ring artefacts in image domain. Traditional ring artifacts processing methods are mostly based on averaging and filtering. In this paper, we propose to use deep learning methods for ring artifacts removal respectively in image domain, projection domain and the polar coordinate system. Besides, by incorporating reconstruction process into neural networks, we unite the information from image domain and projection domain for ring artifacts removal under the framework of deep learning for the first time. A traditional ring artifacts removal method, which is based on wavelet and Fourier transform, is implemented for comparison. Quantitative analysis is performed on simulation and experimental results and it shows that deep learning based methods are promising in solving the problem of non-uniformity correction for photon-counting detectors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yys10l完成签到,获得积分10
1秒前
彭于晏应助ddd采纳,获得10
1秒前
1秒前
轻松的兔子完成签到,获得积分10
2秒前
2秒前
了0完成签到 ,获得积分10
2秒前
苏氨酸应助小郭采纳,获得10
2秒前
2秒前
Emma发布了新的文献求助10
3秒前
huishi105发布了新的文献求助10
4秒前
4秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
收拾收拾应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
916应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
yar应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
收拾收拾应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
坦率耳机应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得20
7秒前
916应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
hohn完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650