Parallel convolution processing using an integrated photonic tensor core

卷积(计算机科学) 物理 计算科学
作者
Johannes Feldmann,Nathan Youngblood,Maxim Karpov,Helge Gehring,Xuan Li,Maik Stappers,Manuel Le Gallo,Xin Fu,Anton Lukashchuk,Arslan S. Raja,Junqiu Liu,David Wright,Abu Sebastian,Tobias J. Kippenberg,Wolfram H. P. Pernice,Harish Bhaskaran
出处
期刊:arXiv: Optics 被引量:100
标识
DOI:10.1038/s41586-020-03070-1
摘要

With the proliferation of ultra-high-speed mobile networks and internet-connected devices, along with the rise of artificial intelligence, the world is generating exponentially increasing amounts of data - data that needs to be processed in a fast, efficient and smart way. These developments are pushing the limits of existing computing paradigms, and highly parallelized, fast and scalable hardware concepts are becoming progressively more important. Here, we demonstrate a computational specific integrated photonic tensor core - the optical analog of an ASIC-capable of operating at Tera-Multiply-Accumulate per second (TMAC/s) speeds. The photonic core achieves parallelized photonic in-memory computing using phase-change memory arrays and photonic chip-based optical frequency combs (soliton microcombs). The computation is reduced to measuring the optical transmission of reconfigurable and non-resonant passive components and can operate at a bandwidth exceeding 14 GHz, limited only by the speed of the modulators and photodetectors. Given recent advances in hybrid integration of soliton microcombs at microwave line rates, ultra-low loss silicon nitride waveguides, and high speed on-chip detectors and modulators, our approach provides a path towards full CMOS wafer-scale integration of the photonic tensor core. While we focus on convolution processing, more generally our results indicate the major potential of integrated photonics for parallel, fast, and efficient computational hardware in demanding AI applications such as autonomous driving, live video processing, and next generation cloud computing services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
2秒前
大模型应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得20
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
无辜寻雪发布了新的文献求助10
2秒前
所所应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
wjf123完成签到 ,获得积分10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
所所应助Bo采纳,获得10
3秒前
LARS应助wz采纳,获得10
3秒前
4秒前
4秒前
科研乐色完成签到,获得积分10
5秒前
6秒前
zuoaogui发布了新的文献求助10
7秒前
7秒前
8秒前
YuenYuen完成签到,获得积分10
8秒前
陈隆完成签到,获得积分10
9秒前
wuzhizhongbin完成签到,获得积分10
10秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3263114
求助须知:如何正确求助?哪些是违规求助? 2903756
关于积分的说明 8326840
捐赠科研通 2573786
什么是DOI,文献DOI怎么找? 1398511
科研通“疑难数据库(出版商)”最低求助积分说明 654203
邀请新用户注册赠送积分活动 632742