Berry连接和曲率
凝聚态物理
物理
Weyl半金属
霍尔效应
手征异常
铁磁性
半金属
磁电阻
量子反常霍尔效应
位置和动量空间
热霍尔效应
量子霍尔效应
格子(音乐)
电阻率和电导率
磁场
带隙
量子力学
费米子
几何相位
声学
作者
Enke Liu,Yan Sun,Nitesh Kumar,Lukas Muechler,Aili Sun,Lin Jiao,Shuo-Ying Yang,Defa Liu,Aiji Liang,Qiunan Xu,Johannes Kroder,Vicky Süß,Horst Borrmann,Chandra Shekhar,Zhaosheng Wang,Chuanying Xi,Wenhong Wang,Walter Schnelle,S. Wirth,Yulin Chen,Sebastian T. B. Goennenwein,Claudia Felser
出处
期刊:Nature Physics
[Springer Nature]
日期:2018-07-27
卷期号:14 (11): 1125-1131
被引量:1073
标识
DOI:10.1038/s41567-018-0234-5
摘要
Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co3Sn2S2, with a quasi-two-dimensional crystal structure consisting of stacked Kagomé lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl nodes close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 Ω-1 cm-1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagomé-lattice structure and the out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.
科研通智能强力驱动
Strongly Powered by AbleSci AI