快离子导体
动力学
材料科学
插层(化学)
热扩散率
磁滞
相(物质)
电解质
相界
离子键合
离子
分析化学(期刊)
热力学
化学
无机化学
物理化学
电极
有机化学
物理
量子力学
色谱法
作者
Dmitrii V. Anishchenko,Maxim V. Zakharkin,Victoria A. Nikitina,Keith J. Stevenson,Evgeny V. Antipov
标识
DOI:10.1016/j.electacta.2020.136761
摘要
NASICON-type Na3V2(PO4)3 cathode materials can be regarded as promising candidates for high-power Na-ion batteries due to the observed facile kinetics of Na-ion de/intercalation. Substitution of V for Mn provides additional advantages related to the increase in the average operating potential and reduced cost of the active material. In this work, we explore the kinetics of Na+ intercalation into Mn-substituted Na3+xMnxV2-x(PO4)3 (x = 0, 0.1, 0.5, 1) materials with a primary focus on the impact of Mn content on the rate capability of the materials. We demonstrate that Mn substitution results in quite subtle changes in bulk ionic diffusivity and charge transfer rates, while more significant impact is observed on the nucleation kinetics, which induces large hysteresis between charge and discharge curves for Mn-rich materials. The increase in hysteresis between charge and discharge curves does not limit the specific energy retention at high C-rates significantly, yet the performance losses are mainly related to the slow phase boundary propagation for biphasic processes. The Mn-rich materials, which demonstrate wider single-phase regions, are shown to outperform the unsubstituted materials in terms of rate-capability and should be preferred for high-power applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI