亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Phase boundary propagation kinetics predominately limit the rate capability of NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) materials

快离子导体 动力学 材料科学 插层(化学) 热扩散率 磁滞 相(物质) 电解质 相界 离子键合 离子 分析化学(期刊) 热力学 化学 无机化学 物理化学 电极 物理 有机化学 量子力学 色谱法
作者
Dmitrii V. Anishchenko,Maxim V. Zakharkin,Victoria A. Nikitina,Keith J. Stevenson,Evgeny V. Antipov
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:354: 136761-136761 被引量:27
标识
DOI:10.1016/j.electacta.2020.136761
摘要

NASICON-type Na3V2(PO4)3 cathode materials can be regarded as promising candidates for high-power Na-ion batteries due to the observed facile kinetics of Na-ion de/intercalation. Substitution of V for Mn provides additional advantages related to the increase in the average operating potential and reduced cost of the active material. In this work, we explore the kinetics of Na+ intercalation into Mn-substituted Na3+xMnxV2-x(PO4)3 (x = 0, 0.1, 0.5, 1) materials with a primary focus on the impact of Mn content on the rate capability of the materials. We demonstrate that Mn substitution results in quite subtle changes in bulk ionic diffusivity and charge transfer rates, while more significant impact is observed on the nucleation kinetics, which induces large hysteresis between charge and discharge curves for Mn-rich materials. The increase in hysteresis between charge and discharge curves does not limit the specific energy retention at high C-rates significantly, yet the performance losses are mainly related to the slow phase boundary propagation for biphasic processes. The Mn-rich materials, which demonstrate wider single-phase regions, are shown to outperform the unsubstituted materials in terms of rate-capability and should be preferred for high-power applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助浮浮世世采纳,获得10
1秒前
yznfly应助忧心的茈采纳,获得10
1秒前
yik完成签到,获得积分20
2秒前
2秒前
4秒前
雨田发布了新的文献求助30
7秒前
江辰汐月发布了新的文献求助10
7秒前
虫二完成签到 ,获得积分10
8秒前
动人的招牌完成签到 ,获得积分10
12秒前
Hissio发布了新的文献求助10
15秒前
研友_VZG7GZ应助江辰汐月采纳,获得10
16秒前
英姑应助雨田采纳,获得10
20秒前
可爱邓邓完成签到 ,获得积分10
22秒前
23秒前
rongrongrong完成签到,获得积分10
24秒前
24秒前
abc发布了新的文献求助10
28秒前
31秒前
情怀应助我又不会后仰采纳,获得30
32秒前
duola123完成签到 ,获得积分10
34秒前
CH3OH发布了新的文献求助10
37秒前
六元一斤虾完成签到 ,获得积分10
42秒前
脑洞疼应助CH3OH采纳,获得30
43秒前
45秒前
小布发布了新的文献求助10
49秒前
浮浮世世发布了新的文献求助10
49秒前
李大刚完成签到 ,获得积分10
52秒前
CH3OH完成签到,获得积分10
57秒前
满意的匪完成签到 ,获得积分10
58秒前
joysa完成签到,获得积分10
58秒前
丸子完成签到 ,获得积分10
1分钟前
1分钟前
yangzai完成签到 ,获得积分0
1分钟前
灵巧的蓝发布了新的文献求助10
1分钟前
Ttttt发布了新的文献求助10
1分钟前
1分钟前
2589完成签到,获得积分10
1分钟前
1分钟前
Akim应助灵巧的蓝采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866566
捐赠科研通 4706287
什么是DOI,文献DOI怎么找? 2542732
邀请新用户注册赠送积分活动 1508144
关于科研通互助平台的介绍 1472276